Supporting information

Enhanced Photoelectrochemical Water Oxidation Performance by

Altering Interfacial Charge Transfer path

Dandan Xu,^{+b,c} Qijing Bu^{+a} Dejun Wang,^a Tengfeng Xie^{*a}.

a College of Chemistry, Jilin University, Changchun 130012, People's Republic of China. E-mail: xietf@jlu.edu.cn

b Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, People's Republic of China.

c College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150028,

People's Republic of China.

*These authors contributed equally to this work.

Figure S1 Cross-sectional SEM of Ti-doped Fe₂O₃ photoanode.

Figure S2 (a) X-ray diffraction patters of Ti-doped Fe_2O_3 , $Al_2O_3/Ti-Fe_2O_3$, $CoPi/Ti-Fe_2O_3$ and $CoPi/Al_2O_3/Ti-Fe_2O_3$. (b) TEM images of $CoPi/Al_2O_3/Ti-Fe_2O_3$.

Figure S3 (a) X-ray diffraction patters and (b) HRTEM images of Ti-doped Fe_2O_3 surface treatment in the solution containing Al^{3+} more times by the same method.

Figure S4 Elemental mapping of Fe, O and Al for Ti-doped Fe₂O₃ surface treatment in the solution containing Al³⁺ more times by the same method.

Figure S5 Cathodic currents in the dark collected for Ti-doped Fe₂O₃, Al₂O₃/Ti-Fe₂O₃, CoPi/Ti-Fe₂O₃ and CoPi/Al₂O₃/Ti-Fe₂O₃.

Figure S6 UV-vis diffuse reflectance spectra of Ti-doped Fe₂O₃, Al₂O₃/Ti-Fe₂O₃, CoPi/Ti-Fe₂O₃ and CoPi/Al₂O₃/Ti-Fe₂O₃.