Electronic Supplementary Information (ESI) available for:

Synthesis, Crystal Structures, and Electronic Properties of One Dimensional Ba₉Sn₃(Te_{1-x}Se_x)₁₅ (x=0-1)

Jun Zhang^a, Rui Su^b, Xiancheng Wang^{*a}, Wenmin Li^a, Jianfa Zhao^a, Zheng Deng^a, Sijia Zhang^a, Shaomin Feng^a, Qingqing Liu^a, Huaizhou Zhao^a, Pengfei Guan^{*b} and ChangqingJin^{*a,c,d}

^a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 &

University of Chinese Academy of Sciences, Beijing 100049, China.

^b Beijing Computational Science Research Center, Beijing 100193, China

^c Collaborative Innovation Center of Quantum Matter, Beijing 100190, China

^d School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

Table SI-SIV presents the results of refinement of single crystal X-ray diffraction for $Ba_9Sn_3Te_{15}$. Table SV-SIX shows the crystallographic data for $Ba_9Sn_3(Te_{1-x}Se_x)_{15}$ (x = 0.2, 0.4, 0.6, 0.8 and 1) refined from powder X-ray diffractions, respectively. Fig. S1-S5 presents the powder X-ray diffraction and their refinement for $Ba_9Sn_3(Te_{1-x}Se_x)_{15}$ (x = 0.2, 0.4, 0.6, 0.8 and 1), respectively. From the Table SV-SIX, we can see that the doped Se atoms favor to firstly occupy the Te1 and Te2 sites. When increasing the doping level of Se, the sites from Te3 to Te6 would be occupied successively.

Table SI. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for Ba₉Sn₃Te₁₅. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	wyck.	x	У	Z	Occ.	U(eq)
Bal	121	0.3774 (0)	0.3876 (2)	0.0833 (2)	1	16.7(2)
Ba2	6k	-0.0222 (9)	0.3690 (9)	0.2500	1	14.9(3)
Sn1	2a	0	0	0	1	19.3(6)
Sn2	4g	0	0	0.1661 (6)	0.96(4)	14.5(5)
Te1	121	-0.0027 (4)	0.2497 (0)	0.0837 (5)	1	15.03(18)
Te2	6k	0.2447 (0)	0.2574 (4)	0.2500	1	12.9(2)
Te3	2c	0.3333	0.6667	0	1	15.7(4)
Te4	4h	0.3333	0.6667	0.1830 (3)	1	11.1(3)
Te5	4i	-0.3333	0.3333	0.1559 (9)	1	18.2(4)
Te6	4i	-0.3333	0.3333	0.0081(6)	0.5	13(2)

Aton	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bal	14.5(5)	16.3(4)	18.4(3)	1.4(3)	-1.3(3)	7.1(3)
Ba2	11.9(5)	13.5(6)	18.6(4)	0	0	5.8(5)
Tel	16.0(4)	16.3(6)	15.5(3)	0.2(3)	-0.2(2)	10.2(6)
Te2	11.3(7)	13.3(6)	15.8(5)	0	0	7.4(5)
Te3	12.0(6)	12.0(6)	23(1)	0	0	6.0(3)
Te4	11.9(4)	11.9(4)	9.3(5)	0	0	6.0(2)
Te5	12.3(5)	12.3(5)	30.2(11)	0	0	6.1(3)
Te6	12.5(8)	12.5(8)	15(6)	0	0	6.3(4)
Sn1	17.5(8)	17.5(8)	23.1(16)	0	0	8.7(4)
Sn2	16.3(6)	16.3(6)	10.9(8)	0	0	8.1(3)

Table SII. Anisotropic Displacement Parameters ($Å^{2} \times 10^{3}$) for Ba₉Sn₃Te₁₅. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Table SIII. Bond Lengths for Ba₉Sn₃Te₁₅.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ba1	$Ba1^1$	4.2156(14)	Te2	Sn2	3.1074(18)
Ba1	Ba2 ²	4.2395(9)	Te3	Ba1 ⁸	3.5572(12)
Bal	Te1 ²	3.7540(11)	Te3	Ba1 ³	3.5572(12)
Ba1	Te1 ³	3.7239(10)	Te3	Ba1 ¹	3.5572(12)
Ba1	Tel	3.4132(16)	Te3	Ba1 ²	3.5572(12)
Ba1	Te1 ⁴	3.4826(16)	Te3	Ba1 ¹³	3.5572(12)
Ba1	Te2	3.7148(9)	Te4	Ba1 ⁸	3.7347(13)
Ba1	Te3	3.5572(12)	Te4	Ba1 ²	3.7348(13)
Ba1	Te4	3.7348(13)	Te4	Ba2 ²	3.6587(12)
Ba1	Te5 ⁵	3.6068(14)	Te4	Ba2 ⁷	3.6587(12)
Ba1	Te6 ⁶	3.787(7)	Te4	Te4 ⁷	2.782(3)
Ba1	Te6 ⁵	3.629(6)	Te5	Ba114	3.6067(14)
Ba2	Ba1 ⁷	4.2395(9)	Te5	Ba1 ¹⁰	3.6068(14)
Ba2	Ba1 ⁸	4.2395(9)	Te5	Ba1 ⁸	3.6068(14)
Ba2	Te1	3.7021(9)	Te5	Ba211	3.5953(15)
Ba2	Te1 ⁹	3.7021(9)	Te5	Ba2 ¹⁵	3.5953(15)
Ba2	Te210	3.4163(16)	Te5	Te6	3.071(13)
Ba2	Te2	3.4509(19)	Te6	Ba114	3.629(6)
Ba2	Te2 ⁷	3.7883(18)	Te6	Ba1 ¹⁶	3.787(7)
Ba2	Te4	3.6587(12)	Te6	Ba1 ³	3.787(7)

Ba2	Te4 ⁷ 3.6587(12)	Te6	Ba1 ¹⁰ 3.629(6)
Ba2	Te5 3.5953(15)	Te6	Ba1 ⁸ 3.629(6)
Ba2	Te5 ¹¹ 3.5954(15)	Te6	Ba1 ¹⁷ 3.787(7)
Te1	Ba1 ⁸ 3.7540(11)	Sn1	Te1 ¹⁸ 3.1044(8)
Te1	Ba1 ¹⁰ 3.4825(16)	Sn1	Te1 ¹⁹ 3.1044(8)
Te1	Ba1 ³ 3.7239(10)	Sn1	Te1 ¹⁰ 3.1044(8)
Tel	Sn1 3.1044(8)	Sn1	Te1 ³ 3.1044(8)
Te1	Sn2 3.0889(16)	Sn1	Te1 ⁴ 3.1044(8)
Te2	Ba1 ⁹ 3.7148(9)	Sn2	Te1 ¹⁰ 3.0890(16)
Te2	Ba2 ² 3.7883(18)	Sn2	Te1 ⁴ 3.0890(16)
Te2	Ba2 ¹² 3.4163(16)	Sn2	Te2 ¹⁰ 3.1074(18)
Te2	Sn2 ¹² 3.1074(18)	Sn2	Te2 ¹² 3.1074(18)

¹1-Y,1-X,-Z; ²1-Y,1+X-Y,+Z; ³+Y-X,+Y,-Z; ⁴+Y-X,-X,+Z; ⁵1+X,+Y,+Z; ⁶1-Y,-X,-Z; ⁷+Y-X,1-X,1/2-Z; ⁸+Y-X,1-X,+Z; ⁹+X,+Y,1/2-Z; ¹⁰-Y,+X-Y,+Z; ¹¹-1+Y-X,-X,1/2-Z; ¹²+Y-X,-X,1/2-Z; ¹³+X,1+X-Y,-Z; ¹⁴-1+X,+Y,+Z; ¹⁵-Y,1+X-Y,+Z; ¹⁶-1+X,+X-Y,-Z; ¹⁷-Y,1-X,-Z; ¹⁸+X,+X-Y,-Z; ¹⁹-Y,-X,-Z

Table SIV. Bond Angles for Ba₉Sn₃Te₁₅.

Atom Ato	m Atom Angle/°	Atom Atom Atom Angle/°
Bal ¹ Bal	Ba2 ² 110.09(2)	Sn2 Te1 Ba1 ¹⁰ 81.02(3)
Tel ² Bal	Ba1 ¹ 55.35(2)	Sn2 Te1 Ba1 82.15(3)
Tel Bal	Ba1 ¹ 116.47(3)	Sn2 Te1 Ba1 ⁸ 146.41(4)
Te1 ³ Ba1	Ba1 ¹ 56.02(2)	Sn2 Te1 Ba1 ³ 144.79(4)
Tel ⁴ Bal	Ba1 ¹ 115.47(3)	Sn2 Te1 Ba2 77.34(5)
Tel ⁴ Bal	Ba2 ² 112.49(3)	Sn2 Te1 Sn1 67.74(4)
Tel Bal	Ba2 ² 119.08(3)	Ba1 ⁹ Te2 Ba1 137.51(5)
Te1 ³ Ba1	Ba2 ² 165.03(2)	Ba1 ⁹ Te2 Ba2 ² 68.80(2)
Tel ² Bal	Ba2 ² 54.772(18)	Ba1 Te2 Ba2 ² 68.80(2)
Tel Bal	Te1 ³ 74.99(3)	Ba2 Te2 Ba1 95.13(3)
Tel ⁴ Bal	Te1 ³ 73.20(3)	Ba2 ¹² Te2 Ba1 ⁹ 92.41(4)
Te1 ³ Ba1	Te1 ² 111.26(2)	Ba2 Te2 Ba1 ⁹ 95.13(3)
Tel ⁴ Bal	Te1 ² 136.80(5)	Ba2 ¹² Te2 Ba1 92.41(4)
Tel Bal	Te1 ⁴ 80.45(3)	Ba2 Te2 Ba2 ² 108.03(5)
Tel Bal	Te1 ² 142.75(5)	Ba2 ¹² Te2 Ba2 ² 92.91(5)
Tel ⁴ Bal	Te2 74.34(3)	Ba2 ¹² Te2 Ba2 159.06(5)
Tel Bal	Te2 73.27(3)	Sn2 Te2 Ba1 77.13(4)
Tel ⁴ Bal	Te3 142.00(3)	Sn2 ¹² Te2 Ba1 ⁹ 77.13(4)
Tel Bal	Te3 75.95(3)	Sn2 Te2 Ba1 ⁹ 145.28(5)
Te1 ³ Ba1	Te4 131.06(5)	Sn2 ¹² Te2 Ba1 145.28(5)

Te1 ⁴	Ba1	Te4	138.41(3)	Sn2 ¹² Te2	Ba2 81.06(3)
Tel	Ba1	Te4	76.47(3)	Sn2 Te2	Ba2 ¹² 81.62(3)
Te1	Ba1	Te5 ⁵	142.16(3)	Sn2 Te2	Ba2 81.06(3)
Te1 ⁴	Ba1	Te5 ⁵	71.93(3)	Sn2 ¹² Te2	Ba2 ² 145.25(4)
Te1 ⁴	Ba1	Te6 ⁵	72.18(4)	Sn2 Te2	Ba2 ² 145.25(4)
Te1 ⁴	Ba1	Te6 ⁶	72.96(4)	Sn2 ¹² Te2	Ba2 ¹² 81.62(3)
Tel	Ba1	Te6 ⁶	138.99(12)	Sn2 ¹² Te2	Sn2 68.17(7)
Te1 ²	Ba1	Te6 ⁶	70.06(4)	Ba1 ⁸ Te3	Ba1 98.333(19)
Tel	Ba1	Te6 ⁵	141.92(12)	Ba1 ³ Te3	Ba1 ² 167.39(3)
Te1 ³	Ba1	Te6 ⁶	67.82(16)	Ba1 ² Te3	Ba1 ¹ 91.84(2)
Te2	Ba1	$Ba1^1$	166.43(4)	Ba1 ² Te3	Ba1 98.333(19)
Te2	Ba1	$Ba2^2$	56.42(3)	Ba1 ¹³ Te3	Ba1 ² 72.68(3)
Te2	Ba1	Te1 ³	137.54(3)	Ba1 ³ Te3	Ba1 91.84(2)
Te2	Ba1	Te1 ²	111.11(3)	Ba1 ⁸ Te3	Ba1 ¹ 167.38(3)
Te2	Ba1	Te4	66.12(3)	Bal Te3	Ba1 ¹ 72.67(3)
Te2	Ba1	Te6 ⁶	125.98(16)	Ba113 Te3	Ba1 167.39(3)
Te3	Ba1	$Ba1^1$	53.663(15)	Ba1 ⁸ Te3	Ba1 ² 98.334(19)
Te3	Ba1	Ba2 ²	104.969(19)	Ba1 ³ Te3	Ba1 ¹ 98.333(19)
Te3	Ba1	Te1 ²	71.80(3)	Ba1 ⁸ Te3	Ba1 ³ 72.68(3)
Te3	Ba1	Te1 ³	72.16(3)	Ba1 ¹³ Te3	Ba1 ⁸ 91.84(2)
Te3	Ba1	Te2	124.83(4)	Ba1 ¹³ Te3	Ba1 ¹ 98.334(19)
Te3	Ba1	Te4	62.79(3)	Ba1 ¹³ Te3	Ba1 ³ 98.334(19)
Te3	Ba1	Te5 ⁵	140.47(2)	Ba1 ² Te4	Ba1 92.22(3)
Te3	Ba1	Te6 ⁶	107.25(13)	Ba1 ⁸ Te4	Ba1 ² 92.22(3)
Te3	Ba1	Te6 ⁵	110.78(14)	Ba1 ⁸ Te4	Ba1 92.21(3)
Te4	Ba1	$Ba1^1$	105.75(2)	Ba2 ² Te4	Ba1 ⁸ 161.95(3)
Te4	Ba1	$Ba2^2$	54.17(2)	Ba2 Te4	Ba1 ² 161.95(3)
Te4	Ba1	Te1 ²	72.55(3)	Ba2 ² Te4	Ba1 ² 91.394(16)
Te4	Bal	Te6 ⁶	142.48(6)	Ba2 ⁷ Te4	Ba1 ² 69.97(2)
Te5 ⁵	Bal	Ba1 ¹	98.81(3)	Ba2 ² Te4	Ba1 69.97(2)
Te5 ⁵	Ba1	$Ba2^2$	53.81(3)	Ba2 ⁷ Te4	Ba1 161.95(3)
Te5 ⁵	Bal	Te1 ³	118.98(5)	Ba2 Te4	Ba1 ⁸ 69.97(2)
Te5 ⁵	Bal	Te1 ²	68.88(2)	Ba2 ⁷ Te4	Ba1 ⁸ 91.395(16)
Te5 ⁵	Bal	Te2	74.68(4)	Ba2 Te4	Ba1 91.395(16)
Te5 ⁵	Bal	Te4	107.97(3)	Ba2 Te4	Ba2 ² 106.45(2)
Te5 ⁵	Ba1	Te6 ⁶	54.85(17)	Ba2 ⁷ Te4	Ba2 ² 106.45(2)
Te5 ⁵	Bal	Te6 ⁵	50.23(19)	Ba2 ⁷ Te4	Ba2 106.45(2)
Te6 ⁶	Bal	Ba1 ¹	53.61(13)	Te4 ⁷ Te4	Ba1 ² 123.68(2)
Te6 ⁵	Bal	Ba1 ¹	57.14(14)	Te4 ⁷ Te4	Ba1 123.68(2)
Te6 ⁵	Ba1	Ba2 ²	95.99(16)	Te4 ⁷ Te4	Ba1 ⁸ 123.68(2)

Te6 ⁶	Ba1	Ba2 ²	99.96(15)	Te4 ⁷ Te4	Ba2 67.653(19)
Te6 ⁵	Bal	Te1 ³	72.12(17)	Te4 ⁷ Te4	Ba2 ⁷ 67.653(19)
Te6 ⁵	Bal	Te1 ²	69.14(4)	Te4 ⁷ Te4	Ba2 ² 67.652(19)
Te6 ⁵	Bal	Te2	121.75(17)	Ba1 ¹⁰ Te5	Ba1 ¹⁴ 103.73(3)
Te6 ⁵	Ba1	Te4	140.90(7)	Ba110 Te5	Ba1 ⁸ 103.72(3)
Te6 ⁵	Bal	Te6 ⁶	4.6(4)	Ba1 ⁸ Te5	Ba1 ¹⁴ 103.73(3)
Ba1 ⁷	Ba2	Ba1 ⁸	109.51(3)	Ba2 ¹⁵ Te5	Ba1 ⁸ 91.335(17)
Tel	Ba2	Ba1 ⁷	164.45(3)	Ba2 ¹⁵ Te5	Ba1 ¹⁴ 72.12(3)
Te1	Ba2	Ba1 ⁸	55.926(18)	Ba2 ¹¹ Te5	Ba1 ⁸ 164.94(3)
Te1 ⁹	Ba2	Ba1 ⁷	55.926(18)	Ba2 Te5	Ba1 ¹⁰ 91.334(17)
Te19	Ba2	Ba1 ⁸	164.45(3)	Ba2 Te5	Ba1 ⁸ 72.12(3)
Te1	Ba2	Te1 ⁹	137.76(4)	Ba2 ¹¹ Te5	Ba1 ¹⁰ 72.12(3)
Te1 ⁹	Ba2	Te2 ⁷	110.62(2)	Ba2 ¹¹ Te5	Ba114 91.334(17)
Te1	Ba2	Te2 ⁷	110.62(2)	Ba2 ¹⁵ Te5	Ba1 ¹⁰ 164.94(3)
Te2	Ba2	Ba1 ⁷	111.729(19)	Ba2 Te5	Ba1 ¹⁴ 164.94(3)
Te2	Ba2	Ba1 ⁸	111.729(19)	Ba2 Te5	Ba2 ¹¹ 93.29(3)
Te2 ⁷	Ba2	Ba1 ⁸	54.780(13)	Ba2 ¹¹ Te5	Ba2 ¹⁵ 93.29(3)
Te2 ⁷	Ba2	Ba1 ⁷	54.780(13)	Ba2 Te5	Ba2 ¹⁵ 93.29(3)
Te210	Ba2	Ba1 ⁷	119.699(15)	Te6 Te5	Ba1 ⁸ 65.26(3)
Te2 ¹⁰	Ba2	Ba1 ⁸	119.699(15)	Te6 Te5	Ba1 ¹⁰ 65.26(3)
Te210	Ba2	Te1 ⁹	75.26(2)	Te6 Te5	Ba114 65.26(3)
Te2	Ba2	Te1 ⁹	73.02(2)	Te6 Te5	Ba2 ¹⁵ 122.90(2)
Te2	Ba2	Te1	73.02(2)	Te6 Te5	Ba2 122.90(2)
Te210	Ba2	Te1	75.26(2)	Te6 Te5	Ba2 ¹¹ 122.90(2)
Te2 ¹⁰	Ba2	Te2	80.94(5)	Ba1 ¹⁴ Te6	Ba1 ¹⁶ 69.25(4)
Te210	Ba2	Te2 ⁷	147.08(5)	Ba110 Te6	Ba1 ³ 92.23(3)
Te2	Ba2	Te2 ⁷	131.97(5)	Ba1 ⁸ Te6	Ba1 ³ 69.25(4)
Te2 ¹⁰	Ba2	Te4	142.34(4)	Ba1 ¹⁰ Te6	Ba1 ¹⁷ 69.25(4)
Te2	Ba2	Te4	69.66(3)	Ba1 ³ Te6	Ba1 ¹⁷ 97.0(2)
Te2 ¹⁰	Ba2	Te4 ⁷	142.34(4)	Ba1 ⁸ Te6	Ba1 ¹⁶ 92.23(3)
Te2	Ba2	Te4 ⁷	69.66(3)	Ba1 ¹⁰ Te6	Ba116 164.37(11)
Te2	Ba2	Te511	140.77(3)	Ba114 Te6	Ba1 ³ 164.37(11)
Te2	Ba2	Te5	140.77(3)	Ba1 ⁸ Te6	Ba117 164.37(11)
Te210	Ba2	Te511	78.57(3)	Ba110 Te6	Ba114 102.8(2)
Te2 ¹⁰	Ba2	Te5	78.57(3)	Ba1 ¹⁰ Te6	Ba1 ⁸ 102.8(2)
Te4 ⁷	Ba2	Ba1 ⁸	93.43(2)	Ba1 ¹⁷ Te6	Ba1 ¹⁶ 97.0(2)
Te4	Ba2	Ba1 ⁷	93.43(2)	Ba1 ³ Te6	Ba1 ¹⁶ 97.0(2)
Te4	Ba2	Ba1 ⁸	55.86(2)	Ba1 ¹⁴ Te6	Ba1 ¹⁷ 92.23(3)
Te4 ⁷	Ba2	Ba1 ⁷	55.86(2)	Ba1 ⁸ Te6	Ba1 ¹⁴ 102.8(2)
Te4 ⁷	Ba2	Te1	115.73(4)	Te5 Te6	Ba116 120.11(17)

Te4	Ba2	Te1 ⁹	115.73(4)	Te5	Te6	Ba1 ³	120.11(17)
Te4 ⁷	Ba2	Te1 ⁹	74.02(3)	Te5	Te6	Ba1 ¹⁷	120.11(17)
Te4	Ba2	Tel	74.02(3)	Te5	Te6	Ba1 ⁸	64.51(19)
Te4	Ba2	Te2 ⁷	66.12(3)	Te5	Te6	Ba1 ¹⁴	64.51(19)
Te4 ⁷	Ba2	Te2 ⁷	66.12(3)	Te5	Te6	Ba1 ¹⁰	64.51(19)
Te4	Ba2	Te4 ⁷	44.69(4)	Te118	Sn1	Te119	91.66(2)
Te5	Ba2	Ba1 ⁸	54.06(2)	Te1 ¹⁸	Sn1	Te1 ¹⁰	87.70(4)
Te511	Ba2	Ba1 ⁷	54.06(2)	Te118	Sn1	Te1 ⁴	88.99(4)
Te511	Ba2	Ba1 ⁸	107.47(3)	Te1 ⁴	Sn1	Tel	91.66(2)
Te5	Ba2	Ba1 ⁷	107.48(3)	Te119	Sn1	Te1 ¹⁰	88.99(4)
Te5	Ba2	Te1 ⁹	131.64(4)	Te1 ³	Sn1	Te1	88.99(4)
Te511	Ba2	Te1 ⁹	69.58(3)	Te1 ⁴	Sn1	Te1 ³	87.70(4)
Te5	Ba2	Tel	69.58(3)	Te119	Sn1	Te1	87.70(4)
Te511	Ba2	Tel	131.64(4)	Te119	Sn1	Te1 ⁴	179.10(5)
Te511	Ba2	Te2 ⁷	73.92(3)	Te1 ¹⁰	Sn1	Te1	91.66(2)
Te5	Ba2	Te2 ⁷	73.92(3)	Te118	Sn1	Te1 ³	91.66(2)
Te5	Ba2	Te4	109.91(3)	Te1 ⁴	Sn1	Te1 ¹⁰	91.66(2)
Te5	Ba2	Te4 ⁷	138.90(3)	Te1 ³	Sn1	Te110	179.10(5)
Te511	Ba2	Te4 ⁷	109.91(3)	Te118	Sn1	Tel	179.10(5)
Te511	Ba2	Te4	138.90(3)	Te1 ¹⁹	Sn1	Te1 ³	91.66(2)
Te5	Ba2	Te511	65.80(5)	Tel	Sn2	Te110	92.25(5)
Bal	Te1	Ba1 ⁸	97.25(5)	Tel	Sn2	Te1 ⁴	92.25(5)
Ba1 ¹⁰	Te1	Ba1 ³	95.71(4)	Te1 ¹⁰	Sn2	Te1 ⁴	92.25(5)
Bal	Te1	Ba1 ³	91.35(4)	Te110	Sn2	Te210	86.88(4)
Ba1 ³	Te1	Ba1 ⁸	68.63(2)	Te1 ¹⁰	Sn2	Te2	178.30(5)
Bal	Te1	Ba1 ¹⁰	159.55(3)	Tel	Sn2	Te212	178.30(5)
Ba1 ¹⁰	Te1	Ba1 ⁸	103.20(5)	Te1 ⁴	Sn2	Te2	89.24(3)
Bal	Te1	Ba2	96.01(4)	Tel	Sn2	Te2	86.88(4)
Ba1 ¹⁰	Tel	Ba2	91.57(4)	Te110	Sn2	Te212	89.24(3)
Ba2	Te1	Ba1 ⁸	69.30(3)	Te1 ⁴	Sn2	Te212	86.88(4)
Ba2	Te1	Ba1 ³	137.87(3)	Tel	Sn2	Te2 ¹⁰	89.24(3)
Sn1	Te1	Ba1 ¹⁰	80.90(3)	Te1 ⁴	Sn2	Te210	178.30(5)
Sn1	Tel	Ba1 ⁸	145.71(3)	Te212	Sn2	Te2	91.65(5)
Sn1	Te1	Ba1 ³	77.11(2)	Te210	Sn2	Te2	91.65(5)
Sn1	Te1	Ba1	82.02(3)	Te210	Sn2	Te212	91.65(5)
Sn1	Te1	Ba2	144 98(3)				

¹1-Y,1-X,-Z; ²1-Y,1+X-Y,+Z; ³+Y-X,+Y,-Z; ⁴+Y-X,-X,+Z; ⁵1+X,+Y,+Z; ⁶1-Y,-X,-Z; ⁷+Y-X,1-X,1/2-Z; ⁸+Y-X,1-X,+Z; ⁹+X,+Y,1/2-Z; ¹⁰-Y,+X-Y,+Z; ¹¹-1+Y-X,-X,1/2-Z; ¹²+Y-X,-X,1/2-Z; ¹³+X,1+X-Y,-Z; ¹⁴-1+X,+Y,+Z; ¹⁵-Y,1+X-Y,+Z; ¹⁶-Y,1-X,-Z; ¹⁷-1+X,+X-Y,-Z; ¹⁸+X,+X-Y,-Z; ¹⁹-Y,-X,-Z

Crystallographic data of Ba ₉ Sn ₃ (Te _{0.8} Se _{0.2}) ₁₅								
Formula : $Ba_9Sn_3(Te_{0.8}Se_{0.2})_{15}$ $Z = 2$								
Crystal system : hexagonal Calculated unit cell formula weight: 6712.25(0) g/mol								
Space group : F	-6c2 (188)							
Crystal parame	ters: $a = b = 10$.	1850(2) (Å); $c = 20$.4055(7) (Å); V	= 1833.17(0) (Å ³)				
$\chi^2 = 6.0(1);$ R	p = 3.2(5)% Rw	p = 5.0(3)%						
Atamic param	eters							
Atom	wyck.	Х	У	Ζ	Occ.			
Bal	121	-0.0041(8)	0.3712 (9)	0.0856(0)	1			
Ba2	6k	0.3763(5)	0.3804 (1)	0.2500(0)	1			
Sn1	2a	0.0000(0)	0.0000(0)	0.0000(0)	0.973(2)			
Sn2	4g	0.0000(0)	0.0000(0)	0.1654(8)	0.976(7)			
Tel	121	0.2578(7)	0.2483 (9)	0.0836 (6)	0.567(3)			
Se1	121	0.2419(0)	0.2492(7)	0.0872(2)	0.432(7)			
Te2	6k	-0.0042(4)	0.2505(3)	0.2500(0)	0.932(7)			
Se2	6k	-0.0035(9)	0.2702(7)	0.2500(0)	0.035(9)			
Te3	2c	0.3333(3)	0.6666(7)	0.0000(0)	1			
Se3	2c	0.3333(3)	0.6666(7)	0.0000(0)	0			
Te4	4h	0.3333(3)	0.6666(7)	0.1704(5)	1			
Se4	4h	0.3333(3)	0.6666(7)	0.1622(2)	0			
Te5	4i	0.6666(7)	0.3333(3)	0.1704(2)	1			
Se5	4i	0.6666(7)	0.3333(3)	0.1742(0)	0			
Te6	4i	0.6666(7)	0.3333(3)	0.1251(7)	0.5			
Se6	4i	0.6666(7)	0.3333(3)	0.2604(9)	0			

Table SV. Crystallographic parameters of Ba₉Sn₃(Te_{0.8}Se_{0.2})₁₅.

Crystallographic data of Ba ₉ Sn ₃ (Te _{0.6} Se _{0.4}) ₁₅							
Formula :	$Ba_9Sn_3(Te_{0.6}Se_{0.4})$	Z = 2					
Crystal syste	em : hexagonal	Calculated	unit cell formula weig	ght: 6122.32(0) g/mo	1		
Space group	: P -6c2 (188)						
Crystal para	meters: $a = b = 1$	10.1209(0) (Å); $c = 2$	20.0549(3) (Å); V =	= 1779.05(7) (Å ³)			
$\chi^2 = 2.8(4);$	Rp = 3.2(0)%]	Rwp = 4.4(6)%					
Atamic para	ameters						
Atom	wyck.	х	У	Z	Occ.		
Ba1	121	-0.0014(2)	0.3714 (3)	0.0850(8)	1		
Ba2	6k	0.3679(6)	0.3677 (6)	0.2500(0)	1		
Sn1	2a	0.0000(0)	0.0000(0)	0.0000(0)	0.815(9)		
Sn2	4g	0.0000(0)	0.0000(0)	0.1758(4)	0.853(8)		
Te1	121	0.2431(5)	0.2229(0)	0.0866(7)	0.335(2)		
Se1	121	0.2478(0)	0.2469(4)	0.0860(9)	0.664(8)		
Te2	6k	-0.0258(0)	0.2501(3)	0.2500(0)	0.348(1)		
Se2	6k	-0.0025(5)	0.2646(5)	0.2500(0)	0.651(9)		
Te3	2c	0.3333(3)	0.6666(7)	0.0000(0)	1		
Se3	2c	0.3333(3)	0.6666(7)	0.0000(0)	0		
Te4	4h	0.3333(3)	0.6666(7)	0.1609(2)	0.774(9)		
Se4	4h	0.3333(3)	0.6666(7)	0.1673(4)	0.225(1)		
Te5	4i	0.6666(7)	0.3333(3)	0.1557(8)	0.861(3)		
Se5	4i	0.6666(7)	0.3333(3)	0.1617(2)	0.138(7)		
Te6	4i	0.6666(7)	0.3333(3)	0.0006 (6)	0.5		
Se6	4i	0.6666(7)	0.3333(3)	0.0006(6)	0		

Table SVI. Crystallographic parameters of Ba₉Sn₃(Te_{0.6}Se_{0.4})₁₅.

Crystallogra	Crystallographic data of Ba ₉ Sn ₃ (Te _{0.4} Se _{0.6}) ₁₅							
Formula :	$Ba_9Sn_3(Te_{0.4}Se_{0.6})$	Z = 2						
Crystal syste	em : hexagonal	Calculated	unit cell formula weig	ght: 5908.11(6)g/mol				
Space group	: P -6c2 (188)							
Crystal para	meters: $a = b = b$	9.9850(3) (Å); $c = 1$	9.8115 (4) (Å); V =	1710.52(1) (Å ³)				
$\chi^2 = 5.1(2);$	Rp = 2.8(6)%	Rwp = 4.3(5)%						
Atamic para	ameters							
Atom	wyck.	Х	у	Z	Occ.			
Bal	121	0.0011(3)	0.3743 (1)	0.0845(1)	1			
Ba2	6k	0.3721(7)	0.3631(4)	0.2500(0)	1			
Sn1	2a	0.0000(0)	0.0000(0)	0.0000(0)	0.875(1)			
Sn2	4g	0.0000(0)	0.0000(0)	0.1741(0)	0.792(4)			
Tel	121	0.2389(7)	0.2568(5)	0.0843(4)	0.222(5)			
Se1	121	0.2300(2)	0.2396(3)	0.0852(3)	0.777(5)			
Te2	6k	0.0222(2)	0.2817(2)	0.2500(0)	0			
Se2	6k	0.0232(0)	0.2935(3)	0.2500(0)	1			
Te3	2c	0.3333(3)	0.6666(7)	0.0000(0)	1			
Se3	2c	0.3333(3)	0.6666(7)	0.0000(0)	0			
Te4	4h	0.3333(3)	0.6666(7)	0.1738(5)	0.395(9)			
Se4	4h	0.3333(3)	0.6666(7)	0.1667(7)	0.604(1)			
Te5	4i	0.6666(7)	0.3333(3)	0.1538(4)	0.941(1)			
Se5	4i	0.6666(7)	0.3333(3)	0.1538(4)	0.142(8)			
Te6	4i	0.6666(7)	0.3333(3)	0.0006 (6)	0.5			
Se6	4i	0.6666(7)	0.3333(3)	0.0006(6)	0			

Table SVII. Crystallographic parameters of Ba₉Sn₃(Te_{0.4}Se_{0.6})₁₅.

Crystallograp	hic data of B	8a9Sn3(Te _{0.2} Se _{0.8})15							
Formula : Ba	$n_9 Sn_3 (Te_{0.2} Se_{0.8})$	Z = 2							
Crystal system	Crystal system : hexagonal Calculated unit cell formula weight: 5656.63(3)g/mol								
Space group :]	P -6c2 (188)								
Crystal parame	eters: $a = b =$	9.7846(3) (Å); $c = 19$	0.7379(0) (Å); V =	1636.51(7) (Å ³)					
$\chi^2 = 5.7(1);$ F	Rp = 3.0(8)%	Rwp = 4.7(3)%							
Atamic paran	neters								
Atom	wyck.	Х	У	Z	Occ.				
Ba1	121	-0.0159(1)	0.3757 (4)	0.0863(7)	1				
Ba2	6k	0.3611(9)	0.3796(1)	0.2500(0)	1				
Sn1	2a	0.0000(0)	0.0000(0)	0.0000(0)	0.638(6)				
Sn2	4g	0.0000(0)	0.0000(0)	0.1781(6)	0.761(0)				
Te1	121	0.2406(1)	0.2040(5)	0.0773(7)	0.048(8)				
Se1	121	0.2351(1)	0.2317 (7)	0.0789 (4)	0.955(7)				
Te2	6k	-0.0248(6)	0.2651(5)	0.2500(0)	0				
Se2	6k	-0.0170(1)	0.2596(0)	0.2500(0)	1				
Te3	2c	0.3333(3)	0.6666(7)	0.0000(0)	0				
Se3	2c	0.3333(3)	0.6666(7)	0.0000(0)	1				
Te4	4h	0.3333(3)	0.6666(7)	0.1537(7)	0.390(2)				
Se4	4h	0.3333(3)	0.6666(7)	0.1562(4)	0.612(0)				
Te5	4i	0.6666(7)	0.3333(3)	0.1816(3)	0.965(7)				
Se5	4i	0.6666(7)	0.3333(3)	0.1869(5)	0.037(3)				
Te6	4i	0.6666(7)	0.3333(3)	0.0062 (9)	0				
Se6	4i	0.6666(7)	0.3333(3)	0.0170(6)	0.5				

Table SVIII. Crystallographic parameters of Ba₉Sn₃(Te_{0.2}Se_{0.8})₁₅.

Table SIX	. Crystallographic	parameters	of Ba ₉ Sn ₃ Se ₁₅ .
-----------	--------------------	------------	---

Crystallographic data of Ba ₉ Sn ₃ Se ₁₅								
Formula : Ba ₉ Sn ₃ Se ₁₅		Z = 2						
Crystal system : hexagonal Calculated unit cell formula weight: 5334.07(9) g/mol								
Space group : P -6c2 (188)								
Crystal parameters: $a = b = 9.7209(3)$ (Å); $c = 19.5817(1)$ (Å); $V = 1602.489(1)$ (Å ³) $\gamma^2 = 2.9(1)$; $Rp = 3.4(0)\%$ $Rwp = 4.6(2)\%$								
Atamic parameters								
Atom	wyck.	х	у	Z	Occ.			
Ba1	121	0.0040(8)	0.3746(9)	0.0833(3)	1			
Ba2	6k	0.3765(3)	0.3772(0)	0.2500(0)	1			
Sn1	2a	0.0000(0)	0.0000(0)	0.0000(0)	0.713(1)			
Sn2	4g	0.0000(0)	0.0000(0)	0.1478(9)	0.662(2)			
Se1	121	0.2638(9)	0.2656(6)	0.0828(4)	1			
Se2	6k	0.0041(3)	0.2309(1)	0.2500(0)	1			
Se3	2c	0.3333(3)	0.6666(7)	0.0000(0)	1			
Se4	4h	0.3333(3)	0.6666(7)	0.1710(2)	1			
Se5	4i	0.6666(7)	0.3333(3)	0.1553(6)	1			
Se6	4i	0.6666(7)	0.3333(3)	0.0270(2)	0.5			

Fig.S1 The power X-ray diffraction and its refinement for $Ba_9Sn_3(Te_{0.8}Se_{0.2})_{15}$.

Fig.S2 The power X-ray diffraction and its refinement for Ba₉Sn₃(Te_{0.6}Se_{0.4})₁₅.

Fig.S3 The power X-ray diffraction and its refinement for Ba₉Sn₃(Te_{0.4}Se_{0.6})₁₅.

Fig.S4 The power X-ray diffraction and its refinement for $Ba_9Sn_3(Te_{0.2}Se_{0.8})_{15}$.

Fig.S5 The power X-ray diffraction and its refinement for Ba₉Sn₃Se₁₅.