Supporting Information

Prominent dielectric transitions in organic-inorganic hybrids: (isoamyl-ammonium $)_{2} \mathrm{CdX}_{4}(\mathrm{X}=\mathrm{Cl}$ and Br$)$

Zhongxia Wang, Xing-Hui Lv, Yu-Ling Liu, Yang Lu, Hai-Peng Chen and Jia-Zhen Ge*

Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, College of Chemistry and Chemical Engineering, Southeast

University, Nanjing 211189, PR China
*E-mail: gjz@seu.edu.cn

Fig. S1 Experimental powder diffraction (XRPD) patterns of 1 measured at 298 K matching very well with the simulated ones.

Fig. S2 Experimental powder diffraction (XRPD) patterns of 1 measured at 203 K matching very well with the simulated ones.

Fig. S3 Experimental powder diffraction (XRPD) patterns of $\mathbf{2}$ measured at 298 K matching very well with the simulated ones.

Fig. S4 Infrared (IR) spectra of solid $\mathbf{1}$ in KBr pellet recorded on a Shimadzu model IR-60 spectrometer at room temperature.

Fig. S5 Infrared (IR) spectra of solid $\mathbf{2}$ in KBr pellet recorded on a Shimadzu model IR-60 spectrometer at room temperature.

Fig. S6 TGA curve of $\mathbf{1}$ measured in the temperature range of $25-600^{\circ} \mathrm{C}$.

Fig. $\mathbf{S 7}$ TGA curve of $\mathbf{2}$ measured in the temperature range of $25-600^{\circ} \mathrm{C}$.

Fig. $\mathbf{S 8}$ The distance of adjacent organic cation in $\mathbf{1}$ (a) and $\mathbf{2}$ (b). Only N atoms were retained for clarity.

Fig. S9 Hydrogen-bonding interactions (red dashed lines) between the organic and inorganic components in 2 at 298 K . The blue dashed lines stand for the mirror plane. Hydrogen atoms bonded to the C atoms were omitted for clarity.

Fig. S10 Perspective view of 1 at 203 K. Hydrogen atoms bonded to the C atoms were omitted for clarity.

Fig. S11 Spatial symmetry operation changes of $\mathbf{1}$ from the HTP (Cmca) to the LTP (Aba2).

Fig. S12 The temperature-dependence of the real part (ε^{\prime}) and dielectric imaginary part ($\varepsilon^{\prime \prime}$) of the polycrystalline sample of 2 at 1000 kHz .

Table S1 Crystal data and structure refinements for 1 and 2.

Compound	$\mathbf{1}$		$\mathbf{2}$
$T(\mathrm{~K})$	298	203	298
Formula wt	430.55	430.55	608.35
Space group	$C m c a$	$A b a 2$	$C m c a$
a / \AA	$7.5775(15)$	$7.45(3)$	$8.0554(10)$
b / \AA	$33.673(7)$	$33.85(17)$	$33.2382(9)$
c / \AA	$7.6500(15)$	$7.42(4)$	$8.0623(5)$
$\beta(\mathrm{deg})$	90	90	90
Volume $\left(\AA^{3}\right)$,	$1952.0(7), 4$	$1871(16), 4$	$2158.7(3), 4$
Z			
$F(000)$	872	872	1160
Collected rflns	6233	7412	4805
Unique rflns	1175	2054	729
GOF	1.132	1.182	1.127
R_{1}	0.0480	0.0969	0.1074
$w R_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.1262	0.2494	0.3026

Table S2. Selected bond lengths [\AA] and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1}^{\mathrm{a}}$ at 298 K and 203 K .

298 K	Cd1-Cl1	2.7062(4)	Cd1-Cl2	2.554(2)
	$\mathrm{Cl} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cl1}{ }^{\text {i }}$	90.31(5)	Cl2-Cd1-Cl1 ${ }^{\text {i }}$	89.69(5)
	$\mathrm{Cl} 2{ }^{\text {i }} \mathrm{Cd} 1-\mathrm{Cl} 1{ }^{\text {ii }}$	90.31(5)	C12-Cd1-Cl1 ${ }^{\text {ii }}$	89.69(5)
	$\mathrm{Cl1} 1^{\mathrm{i}} \mathrm{Cd} 1-\mathrm{Cl} 1^{1 i}$	88.856(18)	Cl2 ${ }^{\text {i}}$-Cd1-Cl1	89.69(5)
	Cl2-Cd1-Cl1	90.31(5)	$\mathrm{Cl1} 1{ }^{\text {ii- }}$ Cd1-Cl1	91.144(18)
	$\mathrm{Cl2}{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Cl} 1^{\text {iii }}$	89.69(5)	$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl} 1^{\text {iii }}$	90.31(5)
	Cl1 ${ }^{\text {i}-C d 1-C l 1 ~}{ }^{\text {iii }}$	91.144(18)	Cl1-Cd1-Cl1 ${ }^{\text {iii }}$	88.856(18)
203 K	Cd1-Cl1	2.627(14)	Cd1-Cl2	2.563(13)
	$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl} 1{ }^{\text {iv }}$	91.4(2)	$\mathrm{Cl}^{\text {iv }}$ - $\mathrm{Cd} 1-\mathrm{Cl1} 1^{\text {iv }}$	97.0(2)
	C12-Cd1-Cl1	97.0(2)	$\mathrm{Cl} 2{ }^{\text {iv-}}-\mathrm{Cd} 1-\mathrm{Cl} 1$	91.4(2)

$\mathrm{Cl1}{ }^{\text {iv}}-\mathrm{Cd} 1-\mathrm{Cl} 1$	84.6(8)	$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl} 1^{\text {v }}$	88.3(2)
$\mathrm{Cl} 2{ }^{\text {iv}}-\mathrm{Cd} 1-\mathrm{Cl} 1{ }^{\text {v }}$	84.1(2)	Cl1-Cd1-Cl1 ${ }^{\text {v }}$	88.9(4)
$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl} 1{ }^{\text {vi }}$	84.1(2)	$\mathrm{Cl} 2{ }^{\text {iv }}$ - $\mathrm{Cd} 1-\mathrm{Cl1}{ }^{\text {vi }}$	88.3(2)
$\mathrm{Cl1}{ }^{\text {iv }}$-Cd1-Cl1 $1^{\text {vi }}$	88.9(4)	Cl1 ${ }^{\mathrm{v}}$ - $\mathrm{Cd} 1-\mathrm{Cl1}{ }^{\text {vi }}$	97.5(8)
$\begin{aligned} & { }^{\text {a }} \text { Symmetry codes: (i) }-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z} \text { (ii) }-\mathrm{x}+3 / 2,-\mathrm{y}+1, \mathrm{z}-1 / 2 \text { (iii) } \mathrm{x}-1 / 2, \mathrm{y},-\mathrm{z}+1 / 2 \text { (iv) }-\mathrm{x}+1,-\mathrm{y}+2, \mathrm{z}(\mathrm{v})- \\ & \mathrm{x}+1 / 2, \mathrm{y}, \mathrm{z}-1 / 2 \text { (vi) } \mathrm{x}+1 / 2,-\mathrm{y}+2, \mathrm{z}-1 / 2 \end{aligned}$			

Table S3. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{2}^{\mathrm{a}}$ at 298 K .

298 K	$\mathrm{Cd} 1-\mathrm{Br} 1$	$2.8670(6)$	$\mathrm{Cd} 1-\mathrm{Br} 2$	$2.695(3)$
	$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{i}}$	$91.56(12)$	$\mathrm{Br} 2-\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{i}}$	$88.44(12)$
	$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{ii}}$	$88.44(12)$	$\mathrm{Br} 2-\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{ii}}$	$91.56(12)$
	$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{ii}}$	$90.76(3)$	$\mathrm{Br}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{iii}}$	$91.56(12)$
	$\mathrm{Br} 2-\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{iii}}$	$88.44(12)$	$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{iii}}$	$89.24(2)$
	$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 1$	$88.44(12)$	$\mathrm{Br} 2-\mathrm{Cd} 1-\mathrm{Br} 1$	$91.56(12)$
	$\mathrm{Br} 1^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{Br} 1$	$89.24(3)$	$\mathrm{Br} 1^{\mathrm{iii}-\mathrm{Cd} 1-\mathrm{Br} 1}$	$90.76(3)$

${ }^{\mathrm{a}}$ Symmetry codes: (i) $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}$ (ii) $\mathrm{x}-1 / 2, \mathrm{y},-\mathrm{z}+1 / 2$ (iii) $-\mathrm{x}+3 / 2,-\mathrm{y}+1, \mathrm{z}-1 / 2$

Table S4. Hydrogen-Bond Geometry (\AA, deg) for $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions at 298 K and 203 K in $\mathbf{1}^{\mathrm{a}}$.

	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
298 K	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl1}{ }^{\mathrm{i}}$	2.94	$3.406(5)$	114.6
	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl1i}$	2.56	$3.406(5)$	158.1
	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl1} 1 \mathrm{iii}$	2.91	$3.565(6)$	132.1
	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{Cl2} 2 \mathrm{iii}$	2.68	$3.320(7)$	129.4
203 K	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl1}^{\mathrm{iv}}$	2.54	$3.04(3)$	116.5
	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl1}^{\mathrm{v}}$	2.67	$3.52(3)$	159.0
	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{Cl1}{ }^{\text {vi }}$	2.52	$3.39(3)$	163.7

${ }^{a}$ Symmetry codes: (i) $x-1, y, z$ (ii) $x-1 / 2, y,-z+1 / 2$ (iii) $-x+1 / 2,-y+1, z-1 / 2$ (iv) $-x+1,-y+2, z(v) x+1 / 2,-$ $y+2, z+1 / 2(v i)-x+1 / 2, y, z+1 / 2$

Table S5. Hydrogen-Bond Geometry (\AA, deg) for $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ interactions at 298 K in $2{ }^{\text {a }}$.

	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
298 K	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Br} 1$	2.80	$3.47(7)$	132.5
	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Br} 1^{\mathrm{i}}$	2.80	$3.47(7)$	132.5

${ }^{\text {a }}$ Symmetry codes: (i) $\mathrm{x}+1 / 2, \mathrm{y},-\mathrm{z}+1 / 2$

