Supporting Information

[C₅H₁₂N]CdCl₃: An ABX₃ Perovskite–type Semiconducting Switchable Dielectric Phase Transition Material

Aurang Zeb,^{a,b} Zhihua Sun,^{†a} Tariq Khan,^{a,b} Muhammad Adnan Asghar,^{a,b} Zhenyue Wu,^{a, b} Lina Li,^a Chengmin Ji,^a and Junhua Luo^{†a}

- ^{a.} State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, P. R. China
- ^{b.} University of Chinese Academy of Sciences (UCAS), Beijing 100190, P. R. China

+Correspondence: <u>sunzhihua@fjirsm.ac.cn</u> and <u>jhluo@fjirsm.ac.cn</u>

Table of Contents:

Figure S1. Powder X-ray diffraction pattern of MPCC

Figure S2. IR spectrum of MPCC

Table S1. IR spectrum of MPCC displays characteristics peaks for stretching and bending vibrations

Figure S3. DSC curves of MPCC at different scanning rates (5 K/min, 10 K/min, and 15 K/min)

Figure S4. TGA spectrum of MPCC, showing its thermal stability

Figure S5. Symmetry breaking process in MPCC occurring from space group Pnma to $P2_1/n$

Figure S6. Temperature-dependent cycle of dielectric constant of MPCC at 1 MHz

Figure S7. UV-vis diffuse reflectance spectroscopy result of MPCC

Figure S8. Temperature-dependent conductivity of MPCC, showing its semiconducting behaviour

Table S2. The SCXRD data and structure refinement details of MPCC at 280 K and 230 K

Table S3. Selected bond angles [°] for MPCC at 280 K and 230 K

 Table S4.
 Selected bond lengths [Å] for MPCC at 280 K and 230 K

Table S5. Hydrogen-bond geometry (Å, deg) for the N–H…Cl at 280 K and 230 K in **MPCC**

Calculation of ' ΔS ' and 'N' For MPCC

Figure S1. Experimental and simulated PXRD Patterns of MPCC, verifying the phase purity.

Figure S2. IR Spectrum of MPCC, verifying the phase purity.

Table S1. IR spectrum of MF	CC displays characte	eristics peaks for st	tretching and I	pending vibrations
-----------------------------	----------------------	-----------------------	-----------------	--------------------

Group	Stretching Vibration (cm ⁻¹)
sp ³ C-H	3070
C-N	995
Tertiary amine salt (R₃NH⁺)	2750
Group	Bending Vibration (cm ⁻¹)
Methyl (CH ₃ -)	1460
Methylene (-CH ₂ -)	1390

Figure S3. DSC curves of MPCC at different scanning rates (5 K/min, 10 K/min, and 15 K/min).

Figure S4. Thermo-Gravimetric Analysis (TGA) spectrum of MPCC, shows its high thermal stability.

Figure S5. Symmetry breaking process in **MPCC** occurring from *Pnma* (HTP) to $P2_1/n$ (LTP).

Figure S6. Temperature-dependent cycle of dielectric constant at 1 MHz for **MPCC**, displaying its switchable dielectric property.

Figure S7. UV-vis diffuse reflectance spectroscopy result of MPCC.

Figure S8. Temperature-dependent conductivity of MPCC, showing its semiconducting behaviour.

Temperature (K)	280 Κ, Μο- <i>Κ</i> α	230 K, Cu-Kα
Sum formula	$C_5 H_{12} Cd Cl_3 N_1$	$C_5 H_{12} Cd Cl_3 N_1$
Moiety formula	$C_5 H_{12} N$, Cd Cl_3	$C_5 H_{12} N$, Cd Cl_3
Formula Weight	304.91	304.91
Crystal system	Orthorhombic	Monoclinic
	Pnma	P 21/c
Cell parameters	<i>a</i> = 14.8934 (10) Å	<i>a</i> = 6.6875 (4) Å
	b= 6.7188 (3) Å	<i>b</i> = 10.0809 (5) Å
	<i>c</i> = 9.9423 (5) Å	<i>c</i> = 14.5347 (10) Å
	$\alpha = 90^{\circ}$	$\alpha_{=90}^{\circ}$
	$\beta = 90^{\circ}$	β = 92.298(5) $^{\circ}$
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$
Volume (ų)	994.88(9)	979.08(10)
Ζ	4	4
ρcal. (g/cm³)	2.036	2.069
F(000)	592.0	592.0
Theta range (°)	3.9110-28.3620	5.3250 ⁻ 72.5490
Limiting indices	-13<=h<=18,	-7<=h<=7,
	-8<= <i>k</i> <=8,	-12<= <i>k</i> <=12,
	-12<=/<=12	-17<=/<=17
Completeness	99.8%	98.8%
GOF	1.043	1.177
$R_1 [on \frac{F_{\circ}^2}{I} > 2\sigma(I)]$	0.0320 (849)	0.0961 (1417)
wR_2 [on $F_{\circ}^2 I > 2\sigma(I)$]	0.0777 (1106)	0.2680 (1699)

Table S2. The SCXRD data and structure refinement details of MPCC at 280 K and 230 K.

 $\alpha R_{1} = \Sigma \left[(F_{o}) - (F_{c}) \right] / \Sigma \left[F_{o} \right], wR_{2} = \left[\Sigma \left(|F_{o}|^{2} - |F_{c}|^{2} \right) / \Sigma |F_{o}|^{2} \right]^{1/2}$

Т (К)	Atom- Atom- Atom	Angles [°]	Atom- Atom- Atom	Angles [°]
	Cl4—Cd1—Cl2 ⁱⁱⁱ	83.15(4)	Cl3—Cd1—Cl2 ⁱⁱⁱ	96.68(4)
280 K	Cl4 ⁱⁱⁱ —Cd1—Cl2	83.15(4)	Cl3 ⁱⁱⁱ —Cd1—Cl2	96.68(4)
	Cl4 ⁱⁱⁱ —Cd1—Cl3	84.92(4)	Cl4—Cd1—Cl3	95.08(5)
	Cl4—Cd1— Cl3 ⁱⁱⁱ	84.92(4)	Cl4 ⁱⁱⁱ —Cd1—Cl3 ⁱⁱⁱ	95.08(4)
	Cl3—Cd1—Cl2	83.31(4)	Cl4 ⁱⁱⁱ —Cd1—Cl2 ⁱⁱⁱ	96.85(4)
	Cl3 ⁱⁱⁱ —Cd1—Cl2 ⁱⁱⁱ	83.32(4)	Cl4—Cd1—Cl2	96.85(4)
	Cd1 - Cl2 - Cd1 ⁱ	78.58(4)	Cl2—Cd1—Cl2 ⁱⁱⁱ	180.0
	Cd1 ⁱ - Cl3 - Cd1	78.82(4)	Cl3—Cd1—Cl3 ⁱⁱⁱ	180.0
	Cd1 - Cl4 - Cd1"	79.83(5)	Cl4 ⁱⁱⁱ —Cd1—Cl4	180.0
	Cd1 ⁱ —Cd1—Cd1 ⁱⁱ	180.0		
	Symmetry codes:	I	I	
	i) 1-X, 1/2+Y, 2-Z;			
	ii) 1-X, -1/2+Y, 2-Z	;		
	iii) 1-X, 1-Y, 2-Z;			
	iv) X, 3/2-Y, +Z			
Т (К)	Atom- Atom- Atom	Angles [°]	Atom- Atom- Atom	Angles [°]
	Cl3—Cd1—Cl4 ⁱⁱ	84.19(9)	Cl3—Cd1—Cl4	95.81(9)
230 K	Cl3 ⁱⁱ —Cd1—Cl4	84.19(9)	Cl3 ⁱⁱ —Cd1—Cl4 ⁱⁱ	95.81(9)
	Cl3—Cd1—Cl5	85.23(10)	Cl3—Cd1—Cl5 ⁱⁱ	94.77(10)
	Cl3 ⁱⁱ —Cd1—Cl5 ⁱⁱ	85.23(10)	Cl3 ⁱⁱ —Cd1—Cl5	94.77(10)
	Cl4—Cd1—Cl5 ⁱⁱ	83.28(9)	Cl4—Cd1—Cl5	96.72(9)
	Cl4 ⁱⁱ —Cd1—Cl5	83.28(9)	Cl4 ⁱⁱ —Cd1—Cl5 ⁱⁱ	96.72(9)
	Cl3 ⁱⁱ —Cd2—Cl5 ⁱⁱ	84.86(10)	Cl3 ⁱⁱ —Cd2—Cl5 ⁱⁱⁱ	95.14(10)
	Cl3 ⁱⁱⁱ -Cd2-Cl5 ⁱⁱⁱ	84.86(10)	Cl3 ⁱⁱⁱ —Cd2—Cl5 ⁱⁱ	95.14(10)
	Cl4-Cd2-Cl3 ⁱⁱ	83.86(9)	Cl4—Cd2—Cl3 ⁱⁱⁱ	96.14(9)
	Cl4 ^{iv} —Cd2—Cl3 ⁱⁱⁱ	83.86(9)	Cl4 ^{iv} —Cd2—Cl3 ⁱⁱ	96.14(9)
	Cl4—Cd2—Cl5"	83.40(9)	Cl4—Cd2—Cl5 ^{III}	96.60(9)
	Cl4 ^w —Cd2—Cl5 ^m	83.40(9)	Cl4 ^w —Cd2—Cl5 ^w	96.60(9)
	Cd2—Cd1—Cd2'	180.0	Cd1 ^{III} —Cd2—Cd1	180.0
	Cl3"—Cd1—Cl3	180.0	Cl3"—Cd2—Cl3"	180.0(1)
		180.0		180.0(8)
	CI5-Cd1-CI5"	180.0	CI5"—Cd2—CI5"	180.0
	Symmetry codes:		1	1
	i). X, Y, Z;			
	ii). 1-X,-Y,1-Z;			
	iii)1+X, Y, Z;			
	iv)X, -Y, 1-Z			

Table S3. Selected Bond Angles [°] for MPCC at 280 K and 230 K

Т (К)	Atom-Atom	Bond length (Å)	Atom-Atom	Bond length (Å)
280 K	$\begin{array}{c} Cd1Cd1^{i}\\ Cd1Cd1^{ii}\\ Cd1Cl2\\ Cd1Cl2^{iii}\\ Cd1Cl3^{iii}\\ Cd1Cl3\\ Cd1Cl4^{iii}\\ Cd1Cl4 \end{array}$	3.35940(15) 3.35940(15) 2.6525(12) 2.6525(12) 2.6458(12) 2.6458(12) 2.6178(13) 2.6178(13)	Cl2—Cd1 ⁱⁱ Cl3—Cd1 ⁱⁱ	2.6525(12) 2.6458 (12)
	Symmetry codes:	1		
	i. 1-X, -1/2+Y, 2-Z;			
	ii. 1-X, 1/2+Y, 2-Z;			
	iii. 1-X, 1-Y, 2-Z;			
	iv. X, 3/2-Y, +Z			
т (к)	Atom-Atom	Bond length (Å)	Atom-Atom	Bond length (Å)
	Cd1—Cl3 ⁱⁱ	2.616(3)	Cd2—Cl3 ⁱⁱ	2.637(3)
230 K	Cd1—Cl3	2.616(3)	Cd2—Cl3 ⁱⁱⁱ	2.637(3)
	Cd1—Cl4	2.628(3)	Cd2—Cl4	2.624(3)
	Cd1—Cl4 ⁱⁱ	2.628(3)	Cd2—Cl4 ^{iv}	2.624(3)
	Cd1—Cl5 ⁱⁱ	2.666(3)	Cd2—Cl5 ⁱⁱ	2.663(3)
	Cd1—Cl5	2.666(3)	Cd2—Cl5 ⁱⁱⁱ	2.663(3)
	Cd1—Cd2	3.3438(2)	Cl3—Cd2 ⁱ	2.637(3)
	Cd1—Cd2 ⁱ	3.3438(2)	Cl5—Cd2 ⁱ	2.663(3)
			Cd2—Cd1 ^{III}	3.3437(2)
	Symmetry codes:			
	i. X, Y, Z;			
	II. 1-X, -Y, 1-Z;			
	III1+X, Y, Z;			
	IVX,-Y, 1-Z			

Table S4. Selected Bond Lengths [Å] for $\ensuremath{\text{MPCC}}$ at 280 K and 230 K

Table S5. Hydrogen-Bond Geometry (Å, degree) for the N–H…Cl at 280 K and 230 K in MPCC

	D–H…A	H…A [Å]	D…A [Å]	D–H…A [°]
280 K	N1–H1…Cl2	2.275	3.176	170.46
	N2–H2…Cl3	2.496	3.397	170.21
230 K	N3–H3…Cl5	2.475	3.357	158.4

Calculation of ' ΔS ' and 'N' For MPCC:

According to Boltzmann equation:

$$\Delta S = nR \ln N$$

Where;

 ΔS = entropy change, extracted from the C_P data,

R = the universal gas constant,

n = the number of guest particles per mole (n = 1, here), and

N = the number of possible orientations for the disordered system.

The ΔS and N values on the heating process of **MPCC** are calculated as follows: ^{S1}

$$\Delta_{S} = \int_{T_{1}}^{T_{2}} \frac{Q}{T} dT$$

$$\Delta_{S} \approx \frac{\Delta H}{T_{c}}$$

$$\Delta_{S} \approx \frac{3.4406 J g^{-1} \times 304.91 g mol^{-1}}{255.5 K}; \text{ where } 304.91 \text{ g mol}^{-1} \text{ is a formula weight of MPCC.}$$

$$\Delta_{S} = \frac{1049.07 \ J \ mol^{-1}}{255.5 \ K}$$
$$\Delta_{S} = 4.114 \ J \ mol^{-1} K^{-1}$$

 $\Delta S = R \ln N$

$$N = e^{\left(\frac{\Delta S}{R}\right)}$$

$$N = e^{\left(\frac{4.114 J \, mol^{-1} K^{-1}}{8.314 J \, mol^{-1} K^{-1}}\right)}$$

N = 1.64

Reference:

S1. Y.-Z. Tang, Z.-F. Gu, J.-B. Xiong, J.-X. Gao, Y. Liu, B. Wang, Y.-H. Tan and Q. Xu, *Chem. Mater.*, 2016, **28**, 4476–4482.