Metal-Organic Gels of Silver Salts with a α,β-Unsaturated Ketone: Influence of Anions and Solvents on Gelation

Debarati Das and Kumar Biradha*

1) NMR spectrum of L.	S1
2) IR spectra of (a) CP-1, b) CP-2, and c-f) the xerogels of MOGs 1-4.	S2
3) PXRD patterns of xerogels and CPs.	\$3
4) Formation of MOGs at various ratios of the metal and ligand.	S4
5) Chemical responsive behavior of the MOGs.	85
6) POM images of MOGs 1-4.	S6
7) Rheological experiment: Variation of the storage modulus (G') and loss modulus (G'') with shear stress for a) MOG-1, b) MOG-2, c) MOG-3, d) MOG-4.	S7
8) DRS study and Solid state fluorescence study for all the CPs and MOGs along with L.	S8
9) Structure of dye used for study dye adsorption.	S9
10) Dye removal from aq. solution of MO of all the xerogels of MOGs 1-4.	S10
11) Gas adsorption isotherm for xerogels of MOGs (a) MOG-2 (b) MOG-4.	S11
12) TGA of all the xerogels MOGs 1-4.	S12
13) Rheological data of all anions in various solvents.	S13-S16
14) FESEM images of xerogels in different solvents.	S17
15) PXRD pattern of xerogels of MOGs 1-4 before and after dye adsorption.	S18
16) UV-vis spectra of the Dye removal from aq. solution of Rose Bengal dye by all the xerogels	S19
17) Illustrations of crystal structures of CP-1 and CP-2	S20
18) UV-vis desorption spectra of methyl orange adsorbed xerogels of a) MOG-1, b) MOG-2	S21
19) Dye removal from high dilution of MO by xerogels of MOG-2 and 4.	822
20) Plots of adsorption capacity (qt) of MO dye vs. time for all the xerogels of MOGs 1-4 at three different concentrations.	S23
21) Rheological experiment data for all MOGs.	Table S1
22) Surface area, pore volume and amount of nitrogen gas absorbed by the xerogel.	Table S2
23) Other Intermolecular interactions (Å) of complexes 1 and 2	Table S3
24) Gelation tests with some other common organic solvents.	Table S4
25) Critical gelation concentration of all the MOGs gels	Table S5
26) Formula used for calculating adsorption capacity (qt) of xerogels	

Figure S1: NMR spectrum of L.

c)

d)

4000

3000

2000 cm-l 500 400.0

b)

Figure S2: IR spectra of (a) CP-1, (b) CP-2, c-h) xerogels of MOG 1-4.

Figure S3. PXRD patterns of xerogels and CPs.

Figure S4: Illustration of the inverted vials for the gel formation reactions: formation of MOGs at various ratios of the metal and ligand.

Figure S5: Chemical responsive behavior of the MOGs.

Figure- S6: Illustrations of microscopic studies: POM images of a) MOG-1, b) MOG-2, c) MOG-3, d) MOG-4.

Figure- S7: Rheological experiment: Variation of the storage modulus (G') and loss modulus (G'') with shear stress for a) MOG-1, b) MOG-2, c) MOG-3, d) MOG-4.

Figure-S8: (a. b) DRS study and (c) Solid state fluorescence study for all the CPs and MOGs along with L.

MO

Figure S10: Dye removal from aq. solution of MO of all the xerogels of a) MOG-1, b) MOG-2, c) MOG-3, d) MOG-4.

Figure S11: Gas adsorption isotherm for xerogels of MOGs (a) MOG-2 (b) MOG-4.

Figure S12: TGA of all the xerogels.

Figure S13: Rheological plots of ClO₄ anion.

Figure S14: Rheological plots of anion SbF₆.

Figure S15: Rheological plots of anion OTf in different solvent.

Figure S16: Rheological plots of anion BF₄

Figure S17: Illustration of FESEM images of xerogels with the four anions in different solvents: a) BF_4 in THF, b) BF_4 in NB, c) BF_4 in *p*-Xylene, d) BF_4 in toluene, e) BF_4 in *o*-Xylene, f) ClO_4 in *o*-Xylene, g) ClO_4 in NB, h) ClO_4 in THF, i) ClO_4 in toluene, j) ClO_4 in *p*-xylene, k) OTf in NB, l) OTf in *m*-xylene, m) SbF_6 in THF, n) SbF_6 in NB.

b)

a)

after dye adsorption: a) MOG-1, b) MOG-2, c) MOG-3, d) MOG-4.

Figure S19: UV-vis adsorption spectra of xerogels of Rose Bengal dye: a) MOG-1, b)MOG-2, c) MOG-3, d) MOG-4.

Figure S20: Illustration of crystal structures of CP-1 and CP-2: a) front view of 3D-network formed by free nitrate anion *via* C-H...O hydrogen bonds in CP-1, b) Entrapment of SbF_6 anion and water molecule in between the brick wall network in CP-2.

Figure S21: UV-vis desorption spectra of methyl orange adsorbed xerogels of a) MOG-1, b) MOG-2.

Figure S22. Dye removal from high dilution of MO by xerogels of MOG-2 and 4.

Figure S23: Plots of adsorption capacity (q_t) of MO dye *vs*. time (t) min for all the xerogels of MOGs 1-4 at three different concentrations.

	Solvents	Yield stress(Pa)	G'-G"(Pa)
	BN	750.09	190754.88
DE	NB	488.02	28323.54
BF ₄	o-xyl	310.02	16322.69
	<i>p</i> -xyl	198.06	24112.19
	Tol	139.72	27597.32
	THF	64.26	41283.73
	BN	624.88	184843.44
	o-xyl	478.23	73071.32
ClO ₄	<i>p</i> -xyl	338.40	48683.57
	Tol	328.03	55609.69
	THF	194.17	16366.77
	<i>m</i> -xyl	177.02	47057.41
OTf	BN	98.22	148012.09
	NB	77.01	2355.73
	<i>m</i> -cresol	355.01	52618.29
	o-cresol	343.39	49662.86
SbF ₆	<i>p</i> -cresol	259.70	58115.94
	THF	192.76	71973.22
	BN	51.30	46119.68
	NB	11.07	9513.78

 Table S1: Rheological experiment data for all MOGs.

Table S2: Surface area, pore volume and amount of nitrogen gas absorbed by the xerogels

Sample	Surface area m ² /g	Pore volume cc/g	N ₂ uptake cc/gm
MOG-4	1.874	2.964x10 ⁻²	20.74
MOG-2	77.586	4.151x10 ⁻²	26.88

Complexes	Interactions	H…A (Å)	DA (Å)	D–H…A (°)
		2.57	3.304(14)	132
1	С-Н…О	2.55	3.248(14)	129
		2.41	3.327(12)	170
		2.43	3.292(12)	154
		2.58	3.138(13)	119
		2.60	3.512(11)	168
		2.27	2.705(10)	108
	C-H…O(intra)	2.33	2.751(11)	107
		2.26	2.703(12)	109
		2.29	2.714(10)	107
2	C-H…F	2.52	3.26(6)	136
	C-H…O(intra)	2.35	2.78(3)	108
		2.31	2.75(2)	108

Table S3: Other Intermolecular interactions (Å) of complexes 1 and 2 $\,$

Table S4: Gelation tests with some other common organic solvents.

Solvent	AgBF ₄	AgClO ₄	AgSO ₃ CF ₃	AgSbF ₆
MeOH	Р	Р	Р	Р
EtOH	Р	Р	Р	Р
Propan-1-ol	Р	Р	Р	Р
Butan-2-ol	Р	Р	Р	Р
Acetonitrile	Р	Р	Р	Р
Dimethyl formamide	Р	Р	Р	Р
Dimethyl sulfoxide	Р	Р	Р	Р

Table S5: Critical gelation concentration (wt %) of all the MOGs taking 10 mg ligand and 1 mL solvent.

Ligand	Metal salt	Solvent	Critical gelation
			concentration (CGC) (wt %)
	AgBF ₄ (10 mg, 0.051 mmol)	THF (1mL)	20.0
	AgBF ₄ (5.95 mg, 0.030 mmol)	Toluene (1mL)	15.9
	AgBF ₄ (4.67 mg, 0.024 mmol)	o-xylene (1mL)	14.7
L (10 mg, 0.034 mmol)	AgBF ₄ (4 mg, 0.020 mmol)	<i>p</i> -xylene (1mL)	14.0
	AgBF ₄ (2 mg, 0.010 mmol)	PhCN (1 mL)	12.0
	AgBF ₄ (5.34 mg, 0.027 mmol)	$PhNO_2 (1 mL)$	15.3
	AgClO ₄ (10.57 mg, 0.051 mmol)	THF (1 mL)	20.6
	AgClO ₄ (5.63 mg, 0.027 mmol)	Toluene (1mL)	15.6
	AgClO ₄ (4.22 mg, 0.020mmol)	o-xylene (1mL)	14.2
	AgClO ₄ (3.52 mg, 0.017 mmol)	<i>p</i> -xylene (1mL)	13.5
	AgClO ₄ (3.52 mg, 0.017 mmol)	PhCN (1 mL)	13.5
	AgSO ₃ CF ₃ (5.24 mg, 0.020 mmol)	<i>m</i> -xylene (1mL)	15.2
L (10 mg, 0.034 mmol)	AgSO ₃ CF ₃ (6.93 mg, 0.027 mmol)	PhCN (1 mL)	16.9
	AgSO ₃ CF ₃ (13.1 mg, 0.051 mmol)	$PhNO_2$ (1 mL)	23.1
	AgSbF ₆ (4.67 mg, 0.014 mmol)	THF (1 mL)	14.7
	AgSbF ₆ (5.84 mg, 0.017 mmol)	o-cresol (1mL)	15.8
	AgSbF ₆ (5.84 mg, 0.017 mmol)	<i>m</i> -cresol (1mL)	15.8
	AgSbF ₆ (5.84 mg, 0.017 mmol)	p-cresol (1mL)	15.8
	AgSbF ₆ (10.5 mg, 0.030mmol)	PhCN (1 mL)	20.5
	AgSbF ₆ (16.35 mg, 0.048 mmol)	PhNO ₂ (1 mL)	26.3

Formula used for calculating adsorption capacity (qt) of xerogels

The molar extinction coefficient, ε can be calculated by using a known diluted solution of MO dye, say 10^{-5} (M).

According to the Beer–Lambert law, $A = \varepsilon X c X l$ (eq. 1)

Where, A = absorbance of the materials, ε = molar extinction coefficient, c = concentration of the solution, l = path length.

Therefore, $\varepsilon = A/(c X l)$

So, A = 0.257, $c = 10^{-5}(M)$ and l = 1 cm

So, $\varepsilon = 0.257/(10^{-5} \text{ X } 1) \text{ M}^{-1} \text{ cm}^{-1}$,

 $\epsilon = 0.257 \text{ X} 10^5 \text{ M}^{-1} \text{cm}^{-1}$

For different time interval, C_t were calculated by applying eq. 1 putting the value of ε . Then adsorption capacities were calculated by following eq. 2.

Adsorption Capacity
$$(q_t) = [(C_0 - C_t)*V] / m$$
 (eq. 2)

Here,

qt= amount of dye methyl orange (MO) in mg, adsorbed into 1 g adsorbent,

C₀ and C_t are the initial and conc. of MO (mg L⁻¹) at different time interval,

V= volume of dye solution (L)

m= mass of adsorbent (g).