Supporting Information

Microwave-solvothermal synthesis of different TiO_2 nanomorphologies with perked up efficiency escorted by incorporating Ni nanoparticle in electrolyte for dye sensitised solar cells

R. Krishnapriya, S. Praneetha and A. Vadivel Murugan *

*Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Pondicherry-605014, India. Tel. +91-413-2654 975, E-mail: <u>avmrajeshwar@gmail.com; avmurugan.nst@pondiuni.edu.in</u>.

Note: This supplementary information contains supplementary Figures S1 to S5 and Table S1 to S4.

Figure S1. Raman Spectra of TiO₂ samples prepared at various MW-ST conditions.

Figure S2. Diffuse Reflectance Spectra of TiO₂ samples prepared under various MW-ST reaction conditions.

Fig.S3. FE-SEM top-view image of different thin-films of TiO_2 nanocrystals with (a) IBL (b) SPL (c) SSL and (d) PSL showing the retention of surface morphology after the photoanode formation.

Figure S4. Comparative plot of *J-V* behavior of DSSCs fabricated with different Ni nanoparticles (Ni-I, Ni-II, Ni-II) incorporated in 1 mg/mL of redox electrolyte for (a) IBL-TiO₂ (b) SPL-TiO₂ (c) SSL-TiO₂ (d) PSL- TiO₂.

Figure S5. Diffuse Reflectance Spectra of Ni-NCs sample of size distribution 40-50 nm prepared under MW-ST method showing broad absorption for 300-650 nm.

Sampla aada	Drooursor	Salvant	MW-ST
Sample coue	rrecursor	Solvent	Reaction condition
IDI		Ethanol	₊ 200 °C, 10 min ramp
IDL	П(ОВи) ₄ , СП ₃ СООН	Water	10 min hold
CDI	Ti(OD ₁₁) HE	UE	180 °C, 10 min ramp
SPL	H(OBu) ₄ , HF	ΗΓ	10 min hold
CCI	D25 NoOL	Ethanol	₊ 180 °C, 10 min ramp
55L	r23, NaOn	Water	10 min hold
PSL	$Ti(OBu)_4, H_2C_2O_4$	Ethanol	200 °C, 10 min ramp
			10 min hold

Table S1: Summarized different MW-ST reaction conditions (different precursor, solvent, temperature and time) to prepare different TiO_2 nanocrystals for DSSC photoanode application.

Table S2: Summarized different MW-ST reaction conditions (precursor, solvent, temperature and time) to prepare different Ni NCs for DSSC photoanode application.

Size	Ni	precursor Solvent	MW-ST	
In nm	concentration	Sorrent	Reaction condition	
15-20	3.9 mg	FG	220 °C, 10 min ramp	
15-20	5.9 mg	LG	15 min hold	
40.50	5.9	EC	220 °C, 10 min ramp	
40-30	5.8 mg	EG	15 min hold	
50-62	7 0		220 °C, 10 min ramp	
	7.8 mg	EG	15 min hold	

Table S3: DSSC photovoltaic performance data determined by photocurrent density-voltage (*J-V*) characteristics analysis of five sets of each TiO_2 nanocrystals prepared by MW-ST methods.

Cell	J _{sc}	V _{oc}	J _{max}	V _{max}	FF	PCE (%)	BET surface area (m ² g ⁻¹)
	(mA/cm ²)	(V)	(mA/cm ²)	(V)		(±0.02%)	
IBL	20.38	0.78	16.05	0.58	58.69	9.33	50.24
SPL	19.09	0.82	15.35	0.59	57.62	9.02	42.16
SSL	14.59	0.75	12.19	0.59	65.57	7.17	22.46
PSL	13.13	0.72	10.63	0.50	56.31	5.30	95.74

Cell	J _{sc}	V_{oc}	J_m	V _m	FF	РСЕ
IBL	20.24	0.78	17.01	0.55	59.12	9.33
IBL+ Ni-I	19.09	0.78	15.31	0.57	58.61	8.73
IBL+ Ni-II	20.79	0.79	16.53	0.58	58.37	9.59
IBL+ Ni-III	14.21	0.76	11.24	0.56	58.28	6.29
SPL	19.16	0.82	15.36	0.59	57.68	9.06
SPL + Ni-I	17.67	0.81	14.11	0.58	57.18	8.18
SPL + Ni-II	19.82	0.81	16.45	0.58	57.77	9.54
SPL + Ni-III	13.51	0.80	10.84	0.58	58.17	6.29
SSL	14.55	0.76	12.19	0.59	65.04	7.19
SSL + Ni-I	14.67	0.73	12.31	0.57	65.52	7.02
SSL + Ni-II	15.37	0.75	12.95	0.58	65.16	7.51
SSL + Ni-II	8.36	0.75	6.98	0.58	64.57	4.05
PSL	12.01	0.69	9.65	0.49	57.06	4.73
PSL + Ni-I	11.39	0.68	9.03	0.48	55.96	4.33
PSL + Ni-II	13.23	0.67	10.64	0.47	56.42	5.00
PSL + Ni-III	7.71	0.64	6.10	0.46	56.87	2.81

Table S4: DSSC photovoltaic performance data determined by photocurrent density-voltage (*J-V*) characteristics analysis of five sets of each TiO_2 nanocrystals with different size controlled Ni NCs of size 15-20 nm (Ni-I) 40-50 nm and (Ni-II) 50-62 (Ni-III) impregnated into redox electrolyte.
