Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Electronic Supplementary Information

Experimental Section

Materials: $CoCl_2 \cdot 6H_2O$, $NiCl_2 \cdot 6H_2O$, hexadecyl trimethyl ammonium bromide were purchased from Aladdin Ltd (China). Urea was purchased from Beijing Chemical Corp. $K_2B_4O_7 \cdot 4H_2O$ and KOH were provided by Chengdu Kelong Chemical Reagent Factory. $RuCl_3 \cdot 3H_2O$ was purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. Carbon cloth (CC) was bought from Hongshan District, Wuhan Instrument Surgical Instruments business, and treated in nitric acid (HNO₃) to serve as substrate for active materials. All chemical regents were used as received without further purification. Deionized water was made by the Millipore system and used in all experimental process.

Synthesis of NiCo₂O₄/CC and NiCo₂O₄@Ni-Co-B/CC: NiCo₂O₄/CC was prepared as follows. 1.289 g CoCl₂·6H₂O, 0.643 g NiCl₂·6H₂O, 0.729 g hexadecyl trimethyl ammonium bromide, 0.54 g urea are dissolved into 50 ml deionized water to form a transparent pink solution. After putting a piece of cleaned CC, the solution was then transferred to a Teflon-lined stainless steel autoclave and kept at 100 °C for 6 h. The CC covered with NiCo-precursor was carefully cleaned for several times with deionized water and ethanol. And it was finally dried in air. Then, the sample was calcined at 300 °C under Ar atomosphere for 3 h to get well defined crystallized NiCo₂O₄. To prepare NiCo₂O₄@Ni-Co-B/CC, the resulting NiCo₂O₄/CC was submitted to oxidative polarization at overpotential of 370 mV vs. RHE in 0.1 M K-Bi for 50 min in a standard three-electrode system (Ag/AgCl as the reference electrode , platinum wire as the counter electrode and NiCo₂O₄/CC as the working electrode).

Synthesis of RuO₂/CC: RuO₂ was prepared in accordance with previous report.¹ Briefly, 2.61 g of RuCl₃·3H₂O and 1.0 mL NaOH (1.0 M) were mixed with 100 ml deionized water. Then the solution was stirred for 45 min at 100 °C. After centrifugation, the resulting RuO₂ was collected and washed with water for several times. Finally, the resulting sample was dried at 80 °C for 24 h and annealed at 300 °C in air for 3 h. 20 mg RuO₂ and 10 μ L 5 wt% Nafion solution were dispersed in 990

 μ L water/ethanol (V:V = 1:1) by 30 min sonication to form a catalyst ink. Then 115 μ L catalyst ink was loaded on CC with a loading mass of ~2.3 mg cm⁻².

Characterizations: XRD data were collected on a Rigaku X-ray diffractometer equipped with a Cu K α radiation source. SEM measurements were performed on a Hitachi S-4800 field emission scanning electron microscope at an accelerating voltage of 20 kV. TEM measurements were carried out on a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. XPS data were collected on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source.

Electrochemical measurements: Electrochemical measurements were performed with a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) in a standard three-electrode system using a NiCo₂O₄@Ni-Co-B/CC as the working electrode, a platinum wire as the counter electrode and Hg/HgO as the reference electrode. The potentials reported in this work were calibrated to reversible hydrogen electrode (RHE), using the following equation: E (RHE) = E (Hg/HgO) + (0.098 + 0.059 pH) V. Polarization curves were obtained using linear sweep voltammetry with a scan rate of 5 mV s⁻¹. All experiments were carried out at room temperature (~25 °C).

Determination of Faradaic efficiency (FE): Oxygen from anodic water oxidation was confirmed by gas chromatography (GC) analysis and quantified via a calibrated pressure sensor to monitor the pressure change in the anode compartment of a H-type electrolytic cell. FE was calculated by comparing the amount of experimentally measured oxygen generated by potentiostatic anodic electrolysis with theoretically calculated oxygen (assuming 100% FE). GC analysis was carried out on GC-2014C (Shimadzu Co.) with thermal conductivity detector and nitrogen carrier gas. Pressure data during electrolysis were recorded using a CEM DT-8890 Differential Air Pressure Gauge Manometer Data Logger Meter Tester with a sampling interval of 1 point per second.

Fig. S1. Time-dependent current density curve for oxidative polarization.

Fig. S2. The cross-sectional SEM image of NiCo₂O₄@Ni-Co-B/CC

Fig. S3. TEM image of NiCo₂O₄@ Ni-Co-B nanowire

Fig. S4. XPS spectra for NiCo₂O₄ in the (a) Ni 2p, (b) Co 2p and (c) O 1s regions.

Fig. S5. LSV curve for NiCo₂O₄@Ni-Co-B/CC in 0.1 M KOH.

Fig. S6. (a) Cyclic voltammograms for NiCo₂O₄@Ni-Co-B/CC in the non-faradaic capacitance current range at scan rates of 10, 30, 50, 70, 90 and 110 mV s⁻¹. (b) The capacitive currents at 0.2 V vs. HgO/HgO as a function of scan rates for NiCo₂O₄@Ni-Co-B/CC.

Fig. S7. LSV curve normalized by ECSA for NiCo₂O₄@Ni-Co-B/CC in 1.0 M KOH.

Fig. S8. SEM image of NiCo₂O₄@Ni-Co-B/CC after stability test in 1.0 M KOH.

Fig. S9. The amount of oxygen theoretically calculated and experimentally measured versus time for NiCo₂O₄@Ni-Co-B/CC in 1.0 M KOH.

Fig. S10. Cyclic voltammograms for (a) post-OER NiCo₂O₄/CC and (b) post-OER NiCo₂O₄@Ni-Co-B/CC in the non-faradaic capacitance current range at scan rates of 10, 30, 50, 70, 90 and 110 mV s⁻¹.

Nyquist plots

of post-OER NiCo₂O₄/CC and post-OER NiCo₂O₄@Ni-Co-B/CC.

Fig. S12. (a) Cyclic voltammograms of post-OER NiCo₂O₄@Ni-Co-B/CC at different scan rates. (b) Linear relationship of the peak current for oxidation wave at the scan rate for post-OER NiCo₂O₄@Ni-Co-B/CC. (c) Cyclic voltammograms of post-OER NiCo₂O₄/CC at different scan rates. (d) Linear relationship of the peak current of oxidation wave at the scan rate for post-OER NiCo₂O₄/CC.

Table S1. Comparison of OER performance for NiCo $_2O_4$ @Ni-Co-Bi/CC with othernon-noble-metal electrocatalysts in alkaline media.

Catalyst	j (mA	Overpotential	Electrolvte	Ref.
	cm ⁻²)	(mV)	J	
NiCo ₂ O ₄ @Ni-Co-B/CC	10	340		
	20	370	0.1 M KOH	This work
	10	270		
	100	340	1.0 M KOH	
NiCo ₂ O ₄ hollow	10	290	1.0 M KOH	2
microcuboids				
Co ₃ O ₄ /NiCo ₂ O ₄ double-	10	340	1.0 M KOH	3
shelled nanocages				
Au/NiCo ₂ O ₄ arrays/Ti	10	360	1.0 M KOH	4
foil				
NiCo ₂ O ₄	10	323	1.0 M KOH	5
nanoneedles/FTO				5
Ni _X Co _{3-X} O ₄ nanowires	10	335	1.0 M KOH	6
Graphene- NiCo ₂ O ₄	10	390	0.1 M KOH	7
hybrid				
Ni _X Co _{3-X} O ₄ nanowires	10	400	1.0 M NaOH	8
NiCo ₂ O ₄	10	416	1.0 M KOH	9
nanosheets/CNTs				
Au/NiCo ₂ O ₄ on	5	377		10
graphene-like material			0.1 WI KOIT	10
NiCo ₂ O ₄ core-shell	10	320	1.0 M NaOH	11
nanowires				
NiCo ₂ O ₄ with rich	10	320	1.0 M KOH	12
oxygen vacanies				

Core-ring structured NiCo ₂ O ₄	100	315	1.0 M KOH	13
Porous NiCo ₂ O ₄ nanosheets	20	380	0.1 M KOH	14
Co ₃ O ₄ NW/CFP	10	330	1.0 M KOH	15
Co ₃ O ₄ /N-rmGO	10	310	1.0 M KOH	16
Fe/mCo ₃ O ₄	10	380	1.0 M KOH	17
Co ₃ O ₄ /SWNTs	10	570	1.0 M KOH	18
Co ₃ O ₄	10	340	1.0 M KOH	19
Mesoporous Co ₃ O ₄	10	476	1.0 M KOH	20
N-CG–CoO	10	340	1.0 M KOH	21
NiO on Ni foam	10	440	1.0 M KOH	22
β -Ni(OH) ₂ nanosheets	10	415	1.0 M KOH	23
Ni/NiO	10	345	1.0 M KOH	24
β-Ni(OH) ₂	10	340	1.0 M KOH	25

References

- J. C. Cruz, V. Baglio, S. Siracusano, V. Antonucci, A. S. Aricò, R. Ornelas, L. Ortiz-Frade, G. Osorio-Monreal, S. M. Durón-Torres and L. G. Arriaga, *Int. J. Electrochem. Sci.*, 2011, 6, 6607-6619.
- 2 X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang and Z. Lin, Angew. Chem., Int. Ed., 2016, 55, 6290-6294.
- 3 H. Hu, B. Guan, B. Xia and X. Lou, J. Am. Chem. Soc., 2015, 137, 5590-5595.
- 4 X. Liu, J. Liu, Y. Li, Y. Li and X. Sun, *ChemCatChem*, 2014, 6, 2501-2506.
- 5 H. Shi and G. Zhao, J. Phys. Chem. C, 2014, 118, 25939-25946.
- 6 X. Yan, K. Li, L. Lyu, F. Song, J. He, D. Niu, L. Liu, X. Hu and X. Chen, ACS Appl. Mater. Interfaces, 2016, **8**, 3208-3214.
- 7 S. Chen and S. Qiao, ACS Nan, o 2013, 7, 10190-10196.
- 8 Y. Li, P. Hasin and Y. Wu, Adv. Mater., 2010, 22, 1926-1929.
- 9 H. Cheng, Y. Su, P. Kuang, G. Chen and Z. Liu, J. Mater. Chem. A, 2015, 3, 19314-19321.
- 10 W. Xia, N. Li, Q. Li, K. Ye and C. Xu, Sci. Rep., 2016, 6, 23398.
- R. Chen, H. Y. Wang, J. Miao, H. Yang and B. Liu, *Nano Energy*, 2015, 11, 333-340.
- 12 J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan and Y. Xie, *Angew. Chem.*, *Int. Ed.*, 2015, **54**, 7399-7404.
- 13 B. Cui, H. Lin, J. Li, X. Li, J. Yang and J. Tao, Adv. Funct. Mater., 2008, 18, 1440-1447.
- 14 C. Zhu, S. Fu, D. Du and Y. Lin, Chem. Eur. J., 2016, 22, 4000-4007.

- 15 H. Xia, Z. Peng, L. Cuncai, Y. Zhao, J. Hao and Z. Huang, J. Chem. Sci., 2016, 128, 1879-1885.
- 16 Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, *Nat. Mater.*, 2011, 10, 780-786.
- 17 C. Xiao, X. Lu and C. Zhao, Chem. Commun., 2014, 50, 10122-10125.
- 18 J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng and Y. Xie, *Nano Res.*, 2012, 5, 521-530.
- 19 Y. Liu, G. Han, X. Li, B. Dong, X. Shang, W. Hu, Y. Chai, Y. Liu and C. Liu, *Int. J. Hydrogen Energy*, 2016, 41, 12976-12982.
- 20 H. Tüysüz, Y. J. Hwang, S. B. Khan, A. M. Asiri and P. Yang, *Nano Res.*, 2013, 6, 47-54.
- S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, *Energy Environ. Sci.*, 2014, 7, 609-616.
- 22 G. Han, Y. Liu, W. Hu, B. Dong, X. Li, X. Shang, Y. Chai, Y. Liu and C. Liu, *Appl. Surf. Sci.*, 2015, **359**, 172-176.
- 23 H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang and S. Jin, *Chem. Mater.*, 2015, 27, 5702-5711.
- 24 J. Liang, Y. Wang, C. Wang and S. Lu, J. Mater. Chem. A, 2016, 4, 9797-9806.
- 25 S. C. Jung, S. L. Sim, Y. W. Soon, C. M. Lim, P. Hing and J. R. Jennings, *Nanotechnol.*, 2016, 27, 275401.