ESI

Design and preparation of hybrid ferroelectric material through ethyleneglycol covalently grafted to Kaolinite

Qiao Qiao,^a Yan-Ni Ding,^a Shun-Ping Zhao,^{*b} Li Li,^a Jian-Lan Liu,^a Xiao-Ming Ren^{*a,c,d}

^aState Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P.
R. China
^bAnhui Provincial Laboratory of Optoelectronic and Magnetism Functional Materials and School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, P. R. China
^cCollege of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
^dState Key Laboratory of Coordination Chemistry, Nanjing University 210093, P. R. China

Tel.: +86 25 58139476 Fax: +86 25 58139481 Email: <u>xmren@njtech.edu.cn</u>

Contents

Figure S1 PXRD patterns of the samples of raw Kaolinite, K-DMSO and K-EG-cg, respectively, in the 2θ range of (a) 5-50° and (b) 7-13°.

Figure S2 PXRD patterns of raw Kaolinite, K-DMSO and K-EG-cg in the 2θ range of 18-25°.

Figure S3 Infrared spectra of the raw Kaolinite, K-DMSO and K-EG-cg in the range of (a) 3800–2800 (b) 1800–400 cm⁻¹.

Figure S4 TG curves of the raw Kaolinite, K-DMSO and K-EG-cg.

Figure S5 DSC plot of K-EG-cg in the temperature range from 0 to 285 °C (between 273 and 558 K).

Figure S6 Temperature dependent dielectric permittivity of K-EG-g in the temperature range of 123-473 K at selected frequencies.

Figure S7 Plots of ϵ '-f and M''-f of (a, b) K-EG in the temperature range of 173- 353 K and (c, d) K-EG-cg in the temperature range of 123- 473 K.

Figure S8 Experimental and calculated PXRD patterns of K-EG-cg.

Figure S9 Packing structure viewed along a-axis direction for K-EG-cg.

Table S1: Characteristic IR bands and the assignments for K-EG-cg in four spectroscopic regions

Table S2: Unit cell parameters of K-EG-cg from geometry optimization together with raw Kaolinite obtained from single crystal structure*

Table S3: Bond distances (Å) and bond angle (°) in EG**

Figure S1 PXRD patterns of the samples of raw Kaolinite, K-DMSO and K-EG-cg, respectively, in the 2θ range of (a) 5-50° and (b) 7-13°.

Figure S2 PXRD patterns of raw Kaolinite, K-DMSO and K-EG-cg in the 2θ range of 18-25°.

Figure S3 Infrared spectra of the raw Kaolinite, K-DMSO and K-EG-cg in the range of (a) 3800–2800 (b) 1800–400 cm⁻¹.

Figure S4 TG curves of the raw Kaolinite, K-DMSO and K-EG-cg.

Figure S5 DSC plot of K-EG-cg in the temperature range from 0 to 285 °C (between 273 and 558 K).

Figure S6 Temperature dependent dielectric permittivity of K-EG-g in the temperature range of 123-473 K at selected frequencies.

Figure S7 Plots of ϵ '-f and M''-f of (a, b) K-EG in the temperature range of 173-353 K and (c, d) K-EG-cg in the temperature range of 123-473 K.

Figure S8 Experimental and calculated PXRD patterns of K-EG-cg.

Figure S9 Packing structure viewed along a-axis direction for K-EG-cg.

	K-EG-cg	Assignation
Region I	3620	v(OH) of inner OH group
	3695,3667	v(OH) of inner-surface OH
		group
Region II	3575,3391	ν(R-OH)
Region III	2970, 2945, 2895	ν(С-Н)
	1466	ν(C-C), δ(CH ₂)
Region IV	1648, 1330	OH bending vibrations
	1030-1070	Al-O-C linkage

Table S1: Characteristic IR bands and the assignments for K-EG-cg in four spectroscopic regions

Table S2: Unit cell parameters of K-EG-cg from geometry optimization together with

	K-EG-cg	Raw kaolinite*		
a/Å	5.1535	5.1535		
b/Å	8.9419	8.9419		
c/Å	9.4038	7.3906		
a/°	91.926	91.926		
β/°	105.046	105.046		
$\gamma/^{\circ}$	89.797	89.797		
$V/Å^3$	418.248	328.708		
The c-axis length was fixed during the optimization				

raw Kaolinite obtained from single crystal structure*

Table S3: Bond distances (Å) and bond angle (°) in EG**

	Single crystal	Optimization	
01-C1	1.427	1.429	
C1-C2	1.514	1.490	
C2-O2	1.431	1.427	
∠01-C1-C2	112.0(3)	111.11	
∠C1-C2-O2	109.5(9)	106.75	

* D. L. Bish, Clays. Clay. Miner., 1993, 41, 738.

** R. Boese and H. C. Weiss, Acta. Cryst., 1998, C54, IUC9800024.