Supporting Information

Anchoring Strategy Leads to Enhanced Proton Conductivity in

a New Metal-Organic Framework

Tien H. N. Lo, $^{\ensuremath{\$}[a]}$ My V. Nguyen $^{\ensuremath{\$}[a,c]}$ and Thach N. Tu $^{\ensuremath{\ast}[a,b]}$

^aCenter for Innovative Materials and Architectures (INOMAR), Vietnam National

University-Ho Chi Minh (VNU-HCM), Ho Chi Minh City 721337, Vietnam.

^bBach Khoa University, VNU-HCM, Ho Chi Minh City 721337, Vietnam.

^cUniversity of Science, VNU-HCM, Ho Chi Minh City 721337, Vietnam.

§These author contributed equally

*To whom correspondence should be addressed: tnthach@inomar.edu.vn

Table of Contents

Section S1	Materials and Analytical Techniques	S3
Section S2	¹ H-NMR Analysis for H ₃ SNDC	S4
Section S3	Microscope Picture of VNU-17	S5
Section S4	Single Crystal X-ray Diffraction Analysis	S6
Section S5	Powder X-ray Diffraction Patterns	S7-S8
Section S6	Fourier Transform Infrared Analysis (FT-IR)	S9
Section S7	Thermal Gravimetric Analyses (TGA)	S10
Section S8	N ₂ Adsorption Isotherm of VNU-17	S11
Section S9	Stability of VNU-17 in Water	S12-S13
Section S10	¹ H-NMR Analysis of Digested Samples	S14-S15
Section S11	Rietveld Refinement of HIm ₁₁ ~VNU-17	S16
Section S12	Water Adsorption Studies	S17-S19
Section S13	Proton Conductivity Studies	S20-S33
Section S14	Stability of HIm ₁₁ ~VNU-17 during Proton Conductivity Studies	S34-S35

Section S1. Materials and Analytical Techniques

Starting Materials and General Procedures. 2,6- napthalenedicarboxylic acid (H₂NDC, 95%), zirconium chloride octahydrate (ZrOCl₂·8H₂O, 98%), imidazole (HIm, 99%), *N*,*N*-dimethylformamide (DMF, 99% extra dry grade), sulfuric acid (H₂SO₄, 98%), hydrochloric acid (HCl, 37%) and formic acid (HCOOH, 95%) were purchased from Aldrich Chemical Co. Anhydrous methanol (MeOH, 99%) and dichloromethane (CH₂Cl₂, 99%) were obtained from Acros Organics. All other chemicals were purchased from local vendors and all chemicals were used without further purification.

Thermal gravimetric analyses (TGA) were performed on a TA Q500 thermal analysis system under air flow. Fourier transform infrared spectroscopy (FT-IR) measurements were carried out using a Bruker Vertex 70 spectrometer with the Attenuated Total Reflectance (ATR) sampling method employed. Solution ¹H nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Advance II-500 MHz NMR spectrometer, typically, VNU-17 (10 mg) was digested in 500 µL of DMSO-d₆ solution of HF (10 µL). The mixture was then sonicated for 10 minutes before ¹H-NMR measurement. Water uptake measurements for VNU-17, HIm₉ VNU-17, and HIm₁₁ VNU-17 were carried out using a BELSORP-agua3 with the experiment temperature being controlled via water circulator. Elemental analyses were performed using a LECO CHNS-932 analyzer. Impedance analysis for pelletized samples of VNU-17, HIm₉ VNU-17, and HIm₁₁ VNU-17 (13 mm diameter, pressed at 3.76 ton cm⁻²) were carried out on a Gamry potentiostat (model: Interface 1000) using the twoprobe method. Humidity was controlled by an Espec humidity chamber (model SH-222). The measuring frequency ranged from 1 MHz to 10 Hz. The applied voltage varied from 1 mV to 80 mV depending on open circle voltage. The thickness of the pellet was measured using a Nikon SMZ1000 microscope, with a typical pellet thickness ranging from 0.4 to 0.5 mm.

Single Crystal and Powder X-ray Diffraction Analysis. Single crystal data for VNU-17 were collected on a Bruker D8 Venture diffractometer using monochromatic fine focus Cu K_{α} radiation ($\lambda = 1.54178$ Å), with operational conditions of 50 kW and 1.0 mA. The diffraction data was collected by a PHOTON-100 CMOS detector and the unit cell information was determined using Bruker SMART APEX II software suite. The data set was

3

reduced and data correction was carried out by a multi-scan spherical absorption method. The structure was solved by direct methods and further refinement was performed using the full-matrix least-squares method in the SHELX-97 program package. After locating the framework backbone atoms, the SQUEEZE routine in PLATON was used to remove residual electron density from solvent molecules located within the pores of VNU-17. The final structure was anisotropically refined using a modified electron density map obtained from the SQUEEZE routine. The crystallographic information file (CIF) of VNU-17 can be obtained, free of charge, via the Cambridge Structural Database (CCDC number: 1540864). Powder X-ray data presented herein were collected using a Bruker D8 Advance employing Ni filtered Cu K α (λ = 1.54178 Å). The system was equipped with an antiscattering shield that prevents incident diffuse radiation from hitting the detector.

Section S2. ¹H-NMR analysis for H₃SNDC

Figure S1. ¹H-NMR analysis of the H₃SNDC linker.

Section S3. Microscope Picture of VNU-17

Figure S2. Optical microscopy picture of VNU-17 crystals.

Table S1. Crystal data and structure refinement for VNU-17		
Empirical formula	$C_{24}H_8O_{22.12}S_2Zr_3$	
Formula weight	988	
Temperature (K)	93	
Wavelength (Å)	1.54178	
Crystal system	Tetragonal	
Space group	14/m	
	a = 17.7506(5)	
Unit cell dimensions (Å)	b = 17.7506(5)	
	c = 22.4863(7)	
Volume (Å ³)	7085.1(5)	
Ζ	4	
Density (g cm ⁻¹)	0.926	
Absorption coefficient (mm ⁻¹)	4.501	
<i>F</i> (000)	1924	
Crystal size (mm)	0.068 × 0.070 × 0.173	
θ range (°)	3.1463 to 65.2399.	
Index ranges	$-12 \le h \le 20, -17 \le k \le 20, -25 \le l \le 25$	
Reflections collected	14660	
Independent reflections	2910 [<i>R</i> int= 0.3155]	
Completeness to θ = 62.348°	1.000	
Data / restraints / parameters	14660/ 3 / 132	
S (GOF)	1.060	
$R_1, wR_2[l > 2\sigma(l)]$	0.1196, 0.2832	
R_1 , wR_2 (all data)	0.1583, 0.3062	
Largest diff. peak and hole(e·Å ⁻³)	1.574 and -3.316	

Section S4 Single Crystal X-ray Diffraction Analysis

Section S5. Powder X-ray Diffraction Patterns

Figure S3. Powder X-ray diffraction patterns of VNU-17 after multistep-steps preparation.

Figure S4. Powder X-ray diffraction patterns of $HIm_9 \subset VNU-17$, $HIm_{11} \subset VNU-17$ and pelletized $HIm_9 \subset VNU-17$, $HIm_{11} \subset VNU-17$ pressing at 3.76 tons cm⁻².

Section S6. Fourier Transform Infrared Analysis (FT-IR)

Figure S5. Fourier transform infrared analysis (FT-IR) of VNU-17, HIm₉ VNU-17 and HIm₁₁ VNU-17.

Figure S6. TGA analysis of VNU-17, HIm₉ VNU-17 and HIm₁₁ VNU-17.

Section S8. N₂ Adsorption Isotherm of VNU-17

Figure S7. N_2 uptake of VNU-17 at 77 K. The closed and open circles represent the adsorption and desorption branches of the isotherm, respectively. The connecting line functions as a guide for the eye.

Section S9. Stability of VNU-17 in Water

Figure S8. Powder X-Ray diffraction patterns of VNU-17 in water for 30 days

Figure S9. Fourier transform infrared analysis (FT-IR) of VNU-17 in water for 30 days

Section S10. ¹H-NMR Analysis of Digested Samples

Figure S10. ¹H-NMR analysis of digested HIm₉CVNU-17

Figure S11. ¹H-NMR analysis of digested HIm₁₁⊂VNU-17.

Section S11. Rietveld Refinement of HIm₁₁CVNU-17

Figure S12. The Rietveld refinements using P_1 space group of HIm₁₁ \subset VNU-17: The experimental (green), refined (red), and difference (blue) patterns. The Bragg positions are marked as black bars.

Section S12. Water Adsorption Studies

Figure S13. Water uptake of VNU-17 at 25 °C as a function of P/P_0

Figure S14. Water uptake of HIm₉ \subset VNU-17 at 25 °C as a function of P/P_0

Figure S15. Water uptake of HIm₁₁ \subset VNU-17 at 25 °C as a function of P/P_0

Section S13. Proton Conductivity Studies

It is noted that the impedance of the electric wire without pelleted sample was collected in order to correct for the inductive effect. The correction was carried out by subtracting the experimental impedance of pelletized sample from the experimental impedance of the electric wire in order to obtain the pure impedance of pelletized sample.

Figure S16. An equivalent circuit used for fitting. Schematic representations: W_1 , Warburg diffusion element; $Q_1/Q_2/Q_3$, imperfect capacitor; R_1 , Contact resistor; R_2 , bulk resistor; R_3 , grain boundary resistor.

Figure S17. Nyquist plot derived from equivalent circuit (black line) and experimental Nyquist plot (red circles) of pelletized VNU-17 under 98% RH at 70 °C. Frequency ranged from 1 MHz to 10 Hz.

Figure S18. Nyquist plot derived from equivalent circuit (black line) and experimental Nyquist plot (red circles) of pelletized HIm₉ VNU-17 under 85% RH at 70 °C. Frequency ranged from 1 MHz to 10 Hz. Inset: Zoom of Nyquist plot at high frequency.

Figure S19. Nyquist plot derived from equivalent circuit (black line) and experimental Nyquist plot (red circles) of pelletized HIm₁₁⊂VNU-17 under 85% RH at 70 °C. Frequency ranged from 1 MHz to 10 Hz. Inset: Zoom of Nyquist plot at high frequency.

Temperature / °C	σ / S cm ⁻¹
30	9.00 × 10 ⁻⁷
40	1.57 × 10 ⁻⁶
50	2.71 × 10 ⁻⁶
60	4.27 × 10 ⁻⁶
70	6.65 × 10 ⁻⁶

Table S2. Conductivity of VNU-17 under 98% RH from 30 °C to 70 °C.

Figure S20. Nyquist plots of pelletized VNU-17 under 98% RH from 30 °C to 70 °C.

Figure S21. Arrhenius plot of VNU-17 at 98% RH.

Relative Humidity / %	σ / S cm ⁻¹
50	3.02 × 10 ⁻⁸
60	7.05 × 10 ⁻⁸
70	1.50 × 10 ⁻⁷
80	3.26 × 10 ⁻⁷
90	7.63 × 10 ⁻⁷
98	6.65 × 10 ⁻⁶

Table S3. Conductivity of VNU-17 at 70 °C from 50% RH to 98% RH.

Figure S22. Nyquist plots of pelletized VNU-17 at 70 °C under relative humidity varied from 50% to 98%.

Temperature / °C	σ / S cm ⁻¹
30	2.06 × 10⁻⁵
40	3.56 × 10⁻⁵
50	5.65 × 10⁻⁵
60	8.93 × 10⁻⁵
70	1.53 × 10 ⁻⁴

Table S4. Conductivity of HIm₉ VNU-17 under 85% RH from 30 °C to 70 °C.

Figure S23. Nyquist plots of pelletized HIm₉ VNU-17 under 85% RH from 30 °C to 70 °C.

Figure S24. Arrhenius plot of HIm₉⊂VNU-17 at 85% RH.

Relative Humidity / %	σ / S cm ⁻¹
50	1.22 × 10 ⁻⁵
60	2.40 × 10 ⁻⁵
70	5.33 × 10⁻⁵
80	9.89 × 10⁻⁵
85	1.53 × 10 ⁻⁴

Table S5. Conductivity of HIm₉⊂VNU-17 at 70 °C from 50% RH to 85% RH.

Figure S25. Nyquist plots of pelletized HIm₉ VNU-17 at 70 °C under relative humidity varied from 50% to 85%.

Temperature / °C	σ / S cm ⁻¹
30	2.00 × 10 ⁻³
40	2.90 × 10 ⁻³
50	3.94 × 10 ⁻³
60	4.94 × 10 ⁻³
70	5.93 × 10 ⁻³

Table S6. Conductivity of HIm₁₁⊂VNU-17 under 85% RH from 30 °C to 70 °C.

Figure S26. Nyquist plots of pelletized HIm₁₁CVNU-17 under 85% RH from 30 °C to 70 °C.

Relative Humidity / %	σ / S cm ⁻¹
50	3.32 × 10 ⁻⁴
60	6.53 × 10 ⁻⁴
70	1.04 × 10 ⁻³
80	3.72 × 10 ⁻³
85	5.93 × 10 ⁻³

Table S7. Conductivity of HIm₁₁⊂VNU-17 at 70 °C from 50% RH to 85% RH.

Figure S27. Nyquist plots of pelletized HIm₁₁⊂VNU-17 at 70 °C under relative humidity ranged from 50% to 85%.

Figure S28. Nyquist plot of pelletized HIm₁₁⊂VNU-17 at 85% RH at 70 °C after 40 h of consecutive ac impedance measurements.

Section S14. Stability of HIm11CVNU-17 during Proton Conductivity Studies

Figure S29. Simulated PXRD pattern of VNU-17 (black) as compared to the experimental pattern from the subjecting pelletized HIm₁₁⊂VNU-17 to time-dependent ac impedance measurements at 85% RH and 70 °C for 40 hours (red).

Figure S30. FT-IR spectra of VNU-17 (black) as compared to the FT-IR spectra from HIm₁₁⊂VNU-17 (blue) and the subjecting pelletized HIm₁₁⊂VNU-17 to time-dependent ac impedance measurements at 85% RH and 70 °C for 40 hours (red).