Electronic Supplementary Information

Spinel cobalt-manganese oxide supported on non-oxidized carbon nanotubes as highly efficient oxygen reduction/evolution electrocatalyst

Ting Ma[#], Chun Li[#], Xiang Chen, Fangyi Cheng* and Jun Chen

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.

#These authors contribute equally to this work.

*E-mail: fycheng@nankai.edu.cn

Fig. S1. XRD patterns of CMO+CNT, CMO@oxCNT, CMO@Vulcan and CMO@rGO.

Fig. S2. SEM images of (a) CMO@oxCNT, (b) CMO+CNT, (c) CMO@Vulcan and (d) CMO@rGO. The insets are related EDX spectra.

Fig. S3. TEM images of (a) CMO@Vulcan and (b) CMO@rGO. High resolution TEM images of (c) CMO@Vulcan and (d) CMO@rGO.

Fig. S4. Current-voltage curves of prepared sample pellets.

Fig. S5. (a) The XPS full spectra of CMO@oxCNTs and CMO@CNTs. (b) The element content comparison of CMO@oxCNTs and CMO@CNTs.

Fig. S6. Raman spectra of CMO@CNTs, CNTs, CMO@oxCNTs, oxCNTs and CMO.

Fig. S7. (a-e) Cyclic voltammograms in non-Faraday reaction region at different scanning rates of prepared samples in Ar-saturated 1 M KOH aqueous solution. (f) The linear fitting of scanning rate dependent currents.

Fig. S8. Nitrogen adsorption/desorption isotherms of prepared samples and Pt/C. The BET specific surface area is shown.

Fig. S9. SEM images of cross section of TCP (a), TCP supporting Pt/C (b) and CMO@CNTs (c).

	1	1	1	1		
Sample	Co (wt%)	Mn (wt%)	O (wt%)	C (wt%)	H (wt%)	N (wt%)
CMO@CNTs	11.56	21.98	12.79	51.00	0.93	1.74
CMO@Vulcan	11.27	21.88	12.73	51.21	1.16	1.75
CMO@rGO	11.10	22.01	12.81	51.13	1.19	1.76
CMO@oxCNT	11.48	21.85	23.11	41.30	1.01	1.25
s						

Table S1. Elemental composition of the prepared samples.

Table S2. Comparison of onset potential, half-wave potential and kinetic current densities.

Sample	Eonset	Rotating	E _{half-wave}	I _k (mA/cm ²)	Electrolyte	Referenc
Sumpre	(V)	Speed (rpm)	(V)			e
CMO@CNTs	0.98	1600	0.91	14.6	1 M KOH	This work
MnC02O4/N-rmGO	0.95	1600	0.88	~9.9	1 M KOH	1
CoO/NCNT	0.91	1600	0.85	~3.85	1 M KOH	2
CMO@CNTs	0.97	1600	0.85	4.95	0.1 M KOH	This work
Co ₃ O ₄ /N-rmGO	0.93	1600	0.82	~2.14	0.1 M KOH	3
c-CoMn ₂ /C	0.95	1600	0.83	3.58	0.1 M KOH	4
Nanostructured Mn	~0.86	1600	~0.75	~0.56	0.1 M KOH	5
Oxide						
CaMnO ₃ microsphere	0.96	1600	0.76	1.39	0.1 M KOH	6
CoMn ₂ O ₄ /rGO-2.3nm	0.95	1600	~0.83	~4.2	0.1 M KOH	7

References:

- 1 Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, *J. Am. Chem. Soc.*, 2012, 134, 3517-3523.
- 2 Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie, J. Zhou, J. Wang, T. Z. Regier, F. Wei, H. Dai, *J. Am. Chem. Soc.*, 2012, 134, 15849-15857.
- 3 Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, *Nat. Mater.*, 2011, *10*, 780-786.
- 4 C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, J. Chen, Nat. Commun., 2015, 6, 7345
- 5 Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc., 2010, 132, 13612-13614.
- 6 X. P. Han, T. R. Zhang, J. Du, F. Y. Cheng, J. Chen, *Chem. Sci.*, 2013, 4, 368-376.
- 7 J. Du, C. Chen, F. Cheng, J. Chen, Inorg. Chem., 2015, 54, 5467-5474.