## **Supporting Information**

## Facile Preparation of Nitrogen-doped Graphene as Efficient Oxygen Reduction

## Electrocatalysts

Xiaochun Gao, <sup>[a]</sup> Liwei Wang, <sup>[a]</sup> Jizhen Ma, <sup>[a]</sup>Yueqing Wang, <sup>[a]</sup> and Jintao Zhang\*<sup>[a]</sup>

<sup>a.</sup> Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School

of Chemistry and Chemical Engineering, Shandong University, P.R. China

E-mail: jtzhang@sdu.edu.cn



**Fig. S1.** Digital images for (A) the preparation of GMN (left to right: melamine solution, GO solution, mixture of GO/melamine, GMN). (B) GO/melamine/HNO<sub>3</sub> precursors (GMN-1, GMN, GMN-5) obtained at various ratios of melamine over GO (R=1, 3, 5) and (C) the obtained precursors in the presence of  $H_2SO_4$ , HNO<sub>3</sub>, and  $H_3PO_4$ , respectively (GMS, GMN, GMP).



Fig. S2. XRD patterns of GO, melamine, melamine/acid composites and GMS, GMP.



Fig. S3. Linear sweep voltammogram (LSV) curves for A) NA-rGO-1; B) NA-rGO-5;C) SA-rGO; D) PA-rGO; E) rGO; F) Pt/C at various rotating speeds, respectively.



**Fig. S4.** Koutecky–Levich plots for A) NA-rGO-1; B) NA-rGO-5; C) SA-rGO; D) PA-rGO; E) rGO; F) Pt/C obtained from LSVs.

| Materials<br>E vs. RHE (V) | NA-rGO-1 | NA-rGO | NA-rGO-5 | SA-rGO | PA-rGO | rGO | Pt/C |
|----------------------------|----------|--------|----------|--------|--------|-----|------|
| 0.55                       | 4.1      | 4.0    | 4.1      | 3.4    | 3.5    | 2.8 | 4.0  |
| 0.65                       | 3.9      | 3.9    | 4.0      | 3.3    | 3.4    | 2.9 | 4.1  |
| 0.75                       | 3.9      | 3.9    | 3.9      | 3.4    | 3.4    | 3.0 | 4.0  |
| 0.85                       | 3.8      | 3.9    | 4.0      | 3.2    | 3.5    | 3.3 | 4.1  |
| 0.95                       | 3.8      | 4.0    | 4.0      | 3.3    | 3.5    | 3.2 | 4.0  |

**Table S1.** n (electron transfer number) obtained for NA-rGO-1, NA-rGO-5, SA-rGO,PA-rGO, rGO, and Pt/C obtained from K-L plots.



Fig. S5. OER curves of all catalysts in 0.1 M KOH (scan rate, 5 mV s<sup>-1</sup>).

**Table S2.** Surface compositions of the as-prepared catalysts obtained from the XPS

 analysis.

| Sample   | $C^1$ | $N^{1}$ | 0    | $S^1$ | $P^1$ | N/C <sup>2</sup> | S/C <sup>2</sup> | P/C <sup>2</sup> |
|----------|-------|---------|------|-------|-------|------------------|------------------|------------------|
| NA-rGO   | 84.91 | 7.27    | 5.60 | -     | -     | 8.6              | -                | -                |
| SA-rGO   | 88.10 | 3.71    | 4.76 | 0.48  | -     | 4.2              | 0.5              | -                |
| PA-rGO   | 85.94 | 4.31    | 6.44 | -     | 0.39  | 5.0              | -                | 0.5              |
| NA-rGO-1 | 92.65 | 3.53    | 4.82 | -     | -     | 3.8              | -                | -                |
| NA-rGO-5 | 86.89 | 6.98    | 4.13 | -     | -     | 8.0              | -                | -                |

<sup>1</sup> at. %

<sup>2</sup> relative atomic ratio $\times 100$  (%)



Fig. S6. (A) Survey X-ray photoelectron spectra, the core-level (B) C1s, (C) N1s XPS

spectra.



**Fig. S7.** The high resolution XPS spectra of (A) S-2p or SA-rGO, (B) PA-2p for PA-rGO.



**Fig. S8.** Current-time chronoamperometric response of NA-rGO and Pt/C in  $O_2$ -saturated A) 0.1M KOH; B) 0.1M KOH with the addition of 3 M methanol solution; Cyclic voltammograms of C) NA-rGO and D) Pt/C in N<sub>2</sub>-saturated 0.1M KOH,  $O_2$ -saturated 0.1 M KOH, and  $O_2$ -saturated 0.1M KOH/3M CH<sub>3</sub>OH solution.