Supporting Information

Construction of Lanthanide Single-Molecule Magnets with the Magnetic Motif $[Dy(MQ)_4]^-$

Deng-Ping Lv,[†] Jie-Yu Zheng,[†] Quan-Wen Li, Jun-Liang Liu, Yan-Cong Chen, Jian-Hua Jia* and Ming-Liang Tong*

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China. *E-mail: jiajh3@mail.sysu.edu.cn; tongml@mail.sysu.edu.cn. † These authors contributed equally.

CONTENT:

Table S1. Continuous Shape Measures calculation for 1 and 2 by SHAPE v2.1.

Figure S1. Experimental and simulated PXRD patterns of 1 and 2.

Figure S2. Dc field dependence of the relaxation time for 2 at 2 K. The optimum field is 800 Oe.

Figure S3. Relaxation time τ versus T^{-1} plots for complex 2 under zero dc magnetic field.

Figure S4. Relaxation time τ versus T^{-1} plots for complex **2** under an 800 Oe dc magnetic field.

				1					
Dy1	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8		
	30.581	22.810	13.706	8.342	2.327	3.687	14.590		
	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8			
	25.762	4.557	3.801	6.505	8.797	20.903			
Dy2	EP-9	OPY-9	HBPY-9	JTC-9	JCCU-9	CCU-9	JCSAPR-9		
	36.298	22.317	19.178	12.912	10.340	9.169	3.519		
	CSAPR-9	JTCTPR-9	TCTPR-9	JTDIC-9	HH-9	MFF-9			
	2.578	3.749	2.102	9.565	12.273	2.706			
2									
Dy1	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8		
	33.703	22.030	14.734	10.571	3.582	3.627	15.439		
	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8			
	25.648	4.738	3.403	6.326	11.144	21.655			
Dy2	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8		
	22.830	22.000	15.446	11.959	1.394	3.341	14.366		
	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8			
	24.682	3.264	2.520	5.146	12.721	20.481			
Dy3	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8		
	32.442	22.083	14.770	9.683	2.766	3.265	16.088		
	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8			
	26.083	4.700	3.309	6.634	10.156	21.678			

Table S1. Continuous Shape Measures calculation for 1 and 2 by SHAPE v2.1*.

* OP-8 = Octagon (D8h), HPY-8 = Heptagonal pyramid (C7v), HBPY-8 = Hexagonal bipyramid (D6h), CU-8 = Cube (Oh), SAPR-8 = Square antiprism (D4d), TDD-8 = Triangular dodecahedron (D2d), JGBF-8 = Johnson gyrobifastigium (D2d), JETBPY-8 = Johnson elongated triangular bipyramid (D3h), JBTPR-8 = Biaugmented trigonal prism (C2v), BTPR-8 = Biaugmented trigonal prism (C2v), JSD-8 = Snub diphenoid (D2d), TT-8 = Triakis tetrahedron (Td), ETBPY-8 = Elongated trigonal bipyramid (D3h). EP-9 = Enneagon (D9h), OPY-9 = Octagonal pyramid (C8v), HBPY-9 = Heptagonal bipyramid (D7h), JTC-9 = Johnson triangular cupola (C3v), JCCU-9 = Capped cube (C4v), CCU-9 = Spherical-relaxed capped cube (C4v), JCSAPR-9 = Capped square antiprism (C4v), CSAPR-9 = Spherical trigonal prism (D3h), JTDIC-9 = Tridiminished icosahedron (C3v), HH-9 = Hula-hoop (C2v), MFF-9 = Muffin (Cs).

Figure S1. Experimental (red lines) and simulated (black lines) PXRD patterns of 1 (top) and 2 (bottom).

Figure S2. Dc field dependence of the relaxation time for 2 at 2 K. The optimum field is 800 Oe. The solid line is a guide for eye.

Figure S3. Relaxation time τ versus T^{-1} plots for complex **2** under zero dc magnetic field.

Model	InTao_Tfenzhiyi _Ueff_CTn_AT1 (User)		
Equation	-ln(C*Tfenzhiyi^(-n)+1/tao0*exp(- U_k*Tfenzhiyi)+ A*T)		
Reduced Chi-Sqr	0.00225		
Adj. R-Square	0.9991		
		Value	Standard Error
Intao	tao0	3.30801E-10	3.54488E-10
Intao	U_k	244.72373	21.57221
Intao	С	0.01249	0.00532
Intao	n	4.39512	0.17308
Intao	Α	29.16971	0.94031

Model	InTao_Tfenzhiyi _CTn_AT1 (Use r)		
Equation	-ln(C*Tfenzhiyi^(-n)+A*T)		
Reduced Chi-Sqr	0.04055		
Adj. R-Square	0.96224		
		Value	Standard Error
Intao	С	18.92485	11.02819
Intao	n	3.42402	0.38905
Intao	Α	0	0

Figure S4. Relaxation time τ versus T^{-1} plots for complex **2** under an 800 Oe dc magnetic field.