Supporting Information

A series of pentanary inorganic supramolecular sulfides (A₃X)[MB₁₂(MS₄)₃] (A = Na, K, Cs; X = Cl, Br, I; M = Ga, In, Gd) featuring $B_{12}S_{12}$ cluster

Z.-D. Sun, Y. Chi, H.-G. Xue and S.-P. Guo*

School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou,

Jiangsu 225002, P. R. China

Bond	Dist.	Bond	Dist.		
1					
In(1)-S(1)	2.672(19)	B(1)–B(2)	1.803(12)		
In(1)–S(1)#1	2.672(19)	B(1)-B(2)#2	1.789(12)		
In(1)-S(1)#2	2.672(19)	B(1)-B(2)#10	1.775(11)		
In(1)–S(1)#3	2.672(19)	B(2)–B(1)#3	1.789(12)		
In(1)–S(1)#4	2.672(19)	B(2)–B(1)#10	1.775(11)		
In(1)–S(1)#5	2.672(19)	B(2)–B(2)#2	1.787(14)		
In(2)–S(1)	2.515(2)	B(2)–B(2)#10	1.775(11)		
In(2)–S(1)#6	2.515(2)	K(1)–S(1)	3.511(7)		
In(2)–S(2)	2.413(2)	K(1)-S(1)#6	3.511(7)		
In(2)–S(2)#6	2.413(2)	K(1)-S(2)#9	3.552(5)		
B(1)–S(2)	1.837(8)	K(1)-S(2)#10	3.552(5)		
B(2)-S(1)	1.855(8)	K(1)-Cl(1)	3.563(6)		
B(1)-B(1)#10	1.831(18)	K(1)–Cl(1)#11	3.563(6)		
B(1)-B(1)#13	1.763(16)				
2					
In(1)–S(1)	2.671(3)	B(1)–B(2)	1.80(2)		
In(1)–S(1)#1	2.671(3)	B(1)-B(2)#2	1.82(2)		
In(1)–S(1)#2	2.671(3)	B(1)-B(2)#10	1.78(18)		
In(1)–S(1)#3	2.671(3)	B(2)–B(1)#5	1.82(2)		
In(1)–S(1)#4	2.671(3)	B(2)–B(1)#10	1.78(18)		
In(1)–S(1)#5	2.671(3)	B(2)–B(2)#10	1.83(3)		
In(2)–S(1)	2.514(4)	B(2)–B(2)#12	1.77(3)		

In(2)–S(1)#6	2.514(4)	K(1)–S(1)	3.473(9)
In(2)–S(2)	2.409(4)	K(1)–S(1)#6	3.473(9)
In(2)–S(2)#6	2.409(4)	K(1)-S(2)#10	3.519(7)
B(1)-S(1)	1.855(14)	K(1)-S(2)#11	3.519(7)
B(2)–S(2)	1.832(15)	K(1)-Br(1)	3.584(7)
B(1)-B(1)#2	1.78(2)	K(1)–Br(1)#9	3.584(7)
B(1)–B(1)#5	1.78(2)		
		3	
In(1)-S(1)	2.680(6)	B(1)–B(2)	1.79(3)
In(1)–S(1)#1	2.680(6)	B(1)–B(2)#3	1.76(4)
In(1)–S(1)#2	2.680(6)	B(1)-B(2)#10	1.75(3)
In(1)–S(1)#3	2.680(6)	B(2)–B(1)#4	1.79(3)
In(1)–S(1)#4	2.680(6)	B(2)–B(1)#10	1.75(3)
In(1)–S(1)#5	2.680(6)	B(2)-B(2)#10	1.83(3)
In(2)–S(1)	2.492(7)	B(2)–B(2)#12	1.76(3)
In(2)–S(1)#6	2.492(7)	K(1)-S(1)	3.403(12)
In(2)-S(2)	2.399(6)	K(1)–S(1)#6	3.403(12)
In(2)–S(2)#6	2.399(6)	K(1)-S(2)#10	3.490(9)
B(1)-S(1)	1.90(2)	K(1)-S(2)#11	3.490(9)
B(2)-S(2)	1.84(2)	K(1)-I(1)	3.668(10)
B(1)–B(1)#3	1.76(4)	K(1)–I(1)#9	3.668(10)
B(1)-B(1)#4	1.76(4)		
		4	
In(1)–S(1)	2.679(4)	B(1)–B(2)	1.80(2)
In(1)–S(1)#1	2.679(4)	B(1)-B(2)#4	1.82(2)
In(1)–S(1)#2	2.679(4)	B(1)-B(2)#13	1.79(2)
In(1)–S(1)#3	2.679(4)	B(2)-B(1)#5	1.82(2)
In(1)–S(1)#4	2.679(4)	B(2)–B(1)#13	1.79(2)
In(1)–S(1)#5	2.679(4)	B(2)-B(2)#13	1.85(4)
In(2)-S(1)	2.543(4)	B(2)-B(2)#15	1.78(4)
In(2)–S(1)#6	2.543(4)	Cs(1)–S(1) #7	5.078(3)
In(2)-S(2)	2.419(4)	Cs(1)–S(1)#8	5.078(3)
In(2)–S(2)#6	2.419(4)	Cs(1)–S(2)#13	3.568(4)
B(1)-S(1)	1.874(16)	Cs(1)-S(2)#14	3.568(4)
B(2)-S(2)	1.835(17)	Cs(1)-I(1)	3.714(15)
B(1)-B(1)#4	1.76(3)	Cs(1)–I(1)#12	3.714(15)
B(1)–B(1)#5	1.76(3)		
		5	
Ga(1)–S(2)	2.766(2)	B(1)–B(2)	1.771(12)
Ga(1)-S(2)#1	2.766(2)	B(1)-B(2)#2	1.796(12)
Ga(1)-S(2)#2	2.766(2)	B(1)–B(2)#7	1.776(11)
Ga(1)-S(2)#3	2.766(2)	B(2)–B(1)#5	1.776(11)
Ga(1)-S(2)#4	2.766(2)	B(2)–B(1)#7	1.776(11)

Ga(1)-S(1)#5	2.766(2)	B(2)–B(2)#2	1.784(14)
Ga(2)–S(1)	2.220(2)	B(2)–B(2)#5	1.784(14)
Ga(2)–S(1)#6	2.220(2)	K(1)–S(1) #7	3.556(3)
Ga(2)–S(2)	2.319(2)	K(1)–S(1)#8	3.556(3)
Ga(2)-S(2)#6	2.319(2)	K(1)–S(2)	3.265(4)
B(1)–S(1)	1.854(9)	K(1)-S(2)#6	3.265(4)
B(2)–S(2)	1.865(8)	K(1)-I(1)	3.611(3)
B(1)-B(1)#7	1.831(17)	K(1)–I(1)#9	3.611(3)
B(1)-B(1)#16	1.742(15)		
		6	
Gd(1)–S(2)	2.790(3)	B(1)–B(2)	1.84(7)
Gd(1)-S(2)#1	2.790(3)	B(1)-B(2)#4	1.77(5)
Gd(1)-S(2)#2	2.790(3)	B(1)-B(2)#13	1.78(5)
Gd(1)-S(2)#3	2.790(3)	B(2)-B(1)#2	1.79(4)
Gd(1)-S(2#4	2.790(3)	B(2)-B(1)#13	1.78(4)
Gd(1)-S(2)#5	2.790(3)	B(2)-B(2)#2	1.79(4)
Ga(1)–S(1)	2.229(2)	B(2)–B(2)#4	1.78(4)
Ga(1)–S(1)#11	2.229(2)	K(1)–S(1) #12	1.81(4)
Ga(1)–S(2)	2.344(3)	K(1)–S(1)#14	1.81(4)
Ga(1)–S(2)#11	2.344(3)	K(1)–S(2)	3.558(4)
B(1)–S(1)	1.836(4)	K(1)–S(2)#11	3.558(4)
B(2)–S(2)	1.868(3)	K(1)–I(1) #6	3.272(4)
B(1)-B(1)#13	1.84(7)	K(1)–I(1)#12	3.272(4)
B(1)-B(1)#16	1.77(5)		

Symmetry codes: #1 1+y-x, +y, 3/2-z; #2 1+x-y, 1-x, +z; #3 1-y, +x-y, +z; #4 +x, +x-y, 3/2-z; #5 1v, 1-x, 3/2-z; #6 -v+x, -v, 1-z; #7 2+v-x, 1-x, +z; #8 1-v, -1+x-v, +z; #9 1-x, -v, 1/2+z; #10 1+v-x, +v, 1/2-z; #11 - y+x, -1+x, -1/2+z; #12 1-x, -y, -1/2+z; #13 + x, +x-y, 1/2+z; #14 - y+x, -1+x, 1/2+z; #151+y, 1-x+y, 1/2+z; #16 2-x, -y, 1/2+z for 1. #1+x, +x-y, 1/2-z; #2 1-y, 1-y, +z; #3 1+y-x, 1-x, +z; #4 1+*y*-*x*, +*y*, 1/2-*z*; #5 1-*y*, 1-*x*, 1/2-*z*; #6 +*y*, +*x*, 1-*z*; #7 2-*y*, 1+*x*-*y*, +*z*; #8 1+*y*-*x*, 2-*x*, +*z*; #9 2-*x*, 2-*y*, -1/2+z; #10 1-x, 1-y, -1/2+z; #11 1-y, 1-x, 3/2-z; #12 +x, +x-y, 3/2-z; #13 +y, 1-x+y, 1/2+z; #14 1y+x, +x, 1/2+z; #15 2-x, 2-y, 1/2+z; #16 1-x, 1-y, 1/2+z for **2.** #1 +x, 1+x-y, 3/2-z; #2 1-y, 1-x, 3/2-z; #3 1-*y*, 1-*x*, +*z*; #4 +*y*-*x*, +*y*, 3/2-*z*; #5 +*y*-*x*, 1-*x*, +*z*; #6 +*y*, +*x*, 1-*z*; #7 -*y*, +*x*-*y*, +*z*; #8 -*y*, +*x*-*y*, +*z*; #9 - x, -y, 1/2+z; #10 - x, 1-y, 1/2+z; #11 - y, 1-x, 1/2+z; #12 + x, 1+x-y, 1/2-z; #13 - x, -y, -1/2+z;#14 - y + x, +x, -1/2 + z; #15 + y, -x + y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z for 3. #1 + x, 1 + x - y, 3/2 - z; #2 - 1 - y, -1/2 + z for 3. #1 + x, 1 + x - y, 3/2 - z; #2 - 1 - y, -1/2 + z for 3. #1 + x, 1 + x - y, 3/2 - z; #2 - 1 - y, -1/2 + z for 3. #1 + x, 1 + x - y, 3/2 - z; #2 - 1 - y, -1/2 + z for 3. #1 + x, 1 + x - y, 3/2 - z; #2 - 1 - y, -1/2 + z for 3. #1 + x, 1 + x - y, 3/2 - z; #2 - 1 - y, -1/2 + z for 3. #1 + x, 1 + x - y, 3/2 - z; #2 - 1 - y, -1/2 + z for 3. #1 + x, 1 + x - y, 3/2 - z; #2 - 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - 1 - x, 1 - y, -1/2 + z; #16 - y, -1/2 + y,1+x-y, +z; #3+y-x, +y, 3/2-z; #4 1-y, 1-x, 3/2-z; #5+y-x, 1-x, +z; #6+y, +x, 1-z; #7-y, +x-y, +z; #8-y, +x-y, +z; #9 + y, -x+y, -1/2+z; #10 - y+x, +x, -1/2+z; #11 + y, -x-y, 1/2+z; #12 - y+x, +x, 1/2+z;#13 1-y, 1-x, 1/2+z; #14 1-x, 1-y, 1/2+z; #15 +x, 1+x-y, 1/2-z; #16 -x, -y, -1/2+z; #17 1-x, 1-y, -1/2+z; #17 1-x, -1/2+z;1/2+z for 4. #1 x, x-y+1, -z+1/2; #2 -x+y, -x+1, z; #3 -y+1, -x+1, -z+1/2; #4 -x+y, y, -z+1/2; #5 -y+1, *x*-*y*+1, *z* #6 -*x*, -*x*+*y*, -*z*+1; #7 *x*, *x*-*y*+1, -*z*+3/2; #8 -*x*, -*y*+1, *z*-1/2; #9 -*x*, -*y*, *z*-1/2 #10 -*y*, *x*-*y*, *z*; #11 -x+y, -x, z; #12 y, -x+y, z+1/2; #13 -x, -y, z+1/2; #14 x-y, x, z+1/2; #15 -x, -y+1, z+1/2; #16 -y+1, x+1, -z+3/2 for 5. #1 +x, 1+x-y, 1/2-z; #2 +y-x, 1-x, +z; #3 1-y, 1-x+y, +z; #4 1-y, 1-x, 1/2-z; #5 +y-x, +y, 1/2-z; #6 - y, +x-y, +z; #7 - y+x, +x, 1/2+z; #8 + y-x, -x, +z; #9 + y, -x+y, 1/2+z; #10 - x, -y, 1/2+z; #11 -x, -x+y, 1-z; #12 -x, -y, -1/2+z; #13 +x, 1+x-y, 3/2-z; #14 -x, 1-y, -1/2+z; #15 -x, -1/2+z; 1/2+*z*; #16 1-*y*, 1-*x*, 3/2-*z* for **6**.

Atom	x	у	z	$U_{ m eq}/{ m \AA^2}$
		1		
In1	6667	3333	7500	18.5(3)
In2	4723.1(6)	0	5000	25.4(2)
S 1	6660(2)	1753.7(18)	5656(2)	17.3(4)
S2	3974.1(18)	704.4(18)	3075(2)	25.7(5)
B1	5380(8)	2065(7)	2842(8)	11.1(17)
B2	6663(8)	2549(8)	3973(9)	15.5(18)
K1	7921(6)	0	5000	234(6)
Cl1	10000	0	7500	189(8)
		2		
In1	6667	3333	2500	15.1(6)
In2	4709.6(10)	4709.6(10)	5000	20.9(4)
S 1	6657(4)	4907(3)	4346(4)	14.7(7)
S2	3957(3)	3256(4)	6922(4)	21.3(8)
B1	6647(15)	4106(13)	6027(15)	10(3)
B2	5369(14)	3317(14)	7164(14)	11(3)
K1	7895(7)	7895(7)	5000	126(3)
Br1	10000	10000	7500	86.0(18)
		3		
In1	3333	6667	7500	30.3(12)
In2	5290.7(19)	5290.7(19)	5000	26.9(8)
S 1	3366(6)	5101(5)	5654(6)	16.5(13)
S2	6036(6)	6738(6)	3094(6)	22.2(14)
B1	3360(20)	5910(20)	3930(20)	9(5)
B2	4620(20)	6690(20)	2840(20)	10(6)
K1	2181(10)	2181(10)	5000	94(4)
I1	0	0	2500	52.4(14)
		4		
In1	3333	6667	7500	13.7(6)
In2	5279.4(11)	5279.4(11)	5000	16.8(4)
S 1	3386(4)	5148(3)	5658(4)	11.3(8)
S2	5976(4)	6723(4)	3099(4)	18.3(9)
B1	3356(16)	5925(14)	3971(17)	6(3)
B2	4610(15)	6686(16)	2835(16)	11(4)
Cs1	2173.0(13)	2173.0(13)	5000	57.2(7)
I1	0	0	2500	35.9(7)
		5		
Gal	3333	6667	2500	29(1)
Ga2	0	5376(1)	5000	22(1)
S 1	625(2)	6723(2)	6778(2)	15(1)

Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (U_{eq}^{a} , Å² × 10³) for 1–6.

S2	1603(2)	5083(2)	4420(2)	14(1)	
B1	2036(7)	6692(7)	7159(8)	9(2)	
B2	2512(8)	5874(8)	6054(8)	9(2)	
K1	0	2172(3)	5000	73(2)	
I1	0	0	7500	36(1)	
6					
Gd1	3333	6667	2500	26.07(9)	
Gal	0	5397.1(3)	5000	14.38(9)	
S 1	640.2(5)	6732.8(5)	6794.8(6)	13.86(15)	
S2	1600.3(5)	5073.5(5)	4435.8(7)	12.60(15)	
B1	2027(2)	6686(2)	7148(3)	10.7(7)	
B2	2509(2)	5860(2)	6068(3)	9.0(6)	
K1	0	2166.1(9)	5000	62.3(4)	
I1	0	0	7500	34.36(12)	

 $^{a}U_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Fig. S1. EDS analyses for 1–6.

Fig. S2. Coordination geometry of 1.

Fig. S3. Calculated band structure (left) and DOS (right) of **1**. The Fermi level is chosen as the energy reference at 0 eV.

Fig. S4. Calculated band structure (left) and DOS (right) of **2**. The Fermi level is chosen as the energy reference at 0 eV.

Fig. S5. Calculated band structure (left) and DOS (right) of **3**. The Fermi level is chosen as the energy reference at 0 eV.

Fig. S6. Calculated band structure (left) and DOS (right) of **5**. The Fermi level is chosen as the energy reference at 0 eV.

Fig. S7. Calculated band structure (left) and DOS (right) of **6**. The Fermi level is chosen as the energy reference at 0 eV.

Fig. S8. Calculated real and imaginary parts of optical dielectric functions of 1 in different directions.

Fig. S9. Calculated real and imaginary parts of optical dielectric functions of 2 in different directions.

Fig. S10. Calculated real and imaginary parts of optical dielectric functions of 3 in different directions.

Fig. S11. Calculated real and imaginary parts of optical dielectric functions of 5 in different directions.

Fig. S12. Calculated real and imaginary parts of optical dielectric functions of 6 in different directions.