Supporting information for

Intermediate bands of MoS₂ enabled by Co doping for enhanced

hydrogen evolution

Jie Pan,^{a,b} Changsheng Song,^a Xin Wang,^c Xiaotao Yuan,^c Yuqiang Fang,^{a,b} Chenguang Guo,^{a,b} Wei Zhao,^{a*} Fuqiang Huang^{a,c*}

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China
^c State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China

List of Contents

1. Theoretical calculation details

2. Supplementary Figures

1. Theoretical calculation details

Theoretical calculations have been performed within the framework of density functional theory (DFT) as implemented by the Vienna an initio Simulation Package (VASP)^[51, 52]. The exchange-correlation energy was treated in the generalized-gradient approximation (GGA) using Perdew-Burke-Ernzerhof (PBE)-D2 method^[53] that includes vdW interactions. The $Co_{0.03}Mo_{0.97}S_2$ model was approximate constructed on the 3×3×2 supercell with 1 Co substituted in $Mo_{36}S_{72}$. The cutoff energy of plane wave was chosen at 400 eV. For the structure optimizations, 6×6×4 Monkhorst-Pack (MP) grids were used. The changes in total energies between two successive iteration steps were less than 10⁻⁵ eV, and all the Hellmann-Feynman force acting on each atoms was lower than 0.01 eV /Å.

References

[S1] P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[S2] G. Kresse, and J. Furthm^{*u*}ller, Phys. Rev. B 1996, 54, 11169.

[S3] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 1992, 64, 1045–1097. 2. Supplementary Figures

Figure S1. Powder XRD pattern of $Co_xMo_{1-x}S_2$ of Route II.

Figure S2. EDX analysis of Fe/Ni doped MoS_2 through Route I. a, Fe doped MoS_2 ; b, Ni doped MoS_2 .

	Spectrum 28		N 7 mm	× ×	-10.
Element	Weight%	Atomic%	S	5	A-250
S	57.49	71.31	Lato Astronomical and	140 M	
Со	42.51	28.69		"Spectrum 30	L'ARD ST
Мо	0	0			
	Spectrum 30		Spectrum 28		Plant -
Element	Weight%	Atomic%			
s	39.89	66.51		The states	222
Со	0	0	Provide States and the second	A A A A	
Мо	60.11	33.49	Line with the second	dura the	1

Figure S3. EDX analysis of $Co_x Mo_{1-x}S_2$ through Route II.

	overpotential	Tafel slope	Reference
Co doped MoS ₂ nanofilm	300 mV at 3.5 mA \cdot cm ⁻²	110	1
Co doped amorphous MoS ₃ film	200 mV at 20 mA · cm ⁻²	43	2
Co doped MoS ₂ nanosheets	200 mV at 60 mA \cdot cm ⁻²	38	3
Co-MoS ₃ hollow structure	171 mV at 10 mA·cm ⁻²	57	4
Ni–Co–MoS ₂ Nanoboxes	155 mV at 10 mA·cm ⁻²	51	5
CoMoS _x clusters	240 mV at 6 mA·cm ⁻²	-	6
This work	357 mV at $10 \text{ mA} \cdot \text{cm}^{-2}$	120	

Table S1

Reference

1. H. T. Wang, C. Tsai, D. S. Kong, K. R. Chan, F. Abild-Pedersen, J. Norskov, Y. Cui, *Nano. Res.* **2015**, *8*, 566-575

2. D. Merki, H. Vrubel, L. Rovelli, S. Fierro, X. L. Hu, Chem. Sci. 2012, 3, 2515-2525

3. Dai, X. P., Du, K. L., Li, Z. Z., Liu, M. Z., Ma, Y. D., Sun, H., Zhang, X., Yang, Y., *ACS Appl. Mater. Interfaces* **2015**, *7*, 27242–27253

4. Yu, L., Xia, B. Y., Wang, X., Lou, X. W., Adv. Mater. 2016, 28, 92-97

Yu, X. Y., Feng, Y., Jeon, Y., Guan, B., Lou, X. W., Paik, U., *Adv. Mater.* 2016, *28*, 9006-9011
Staszak-Jirkovsky, J., Malliakas, C. D., Lopes, P. P., Danilovic, N., Kota, S. S., Chang, K. C., Genorio, B., Strmcnik, D., Stamenkovic, V. R., Kanatzidis, M. G., Markovic, N. M., *Nat. Mater.* 2016, *15*, 197-203