Supporting Information

Efficient MMoO₄ (M = Co, Ni) Carbon Cloth Electrodes for Water

Oxidation

Jiangli Meng,[†]^a Jiaqi Fu,[†]^a Xiaoxuan Yang,^a Meijie Wei,^a Song Liang,^b Hong-Ying Zang,^{*a} Huaqiao Tan,^a Yonghui Wang,^{*a} and Yangguang Li^{*a}

^aKey Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, P. R. China. Email: <u>zanghy100@nenu.edu.cn</u>; <u>wangyh319@nenu.edu.cn</u>; <u>liyg658@nenu.edu.cn</u>. Fax: +86 0431-85684009

^bKey Laboratory of Bionic Engineering Ministry of Education, Jilin university, No. 5988 Renmin Street, Changchun, China

Table of Contents

Figure S1 Contact angle measurement on the electrodes of bare carbon cloth.

Figure S2 Low- and high-magnification SEM images of bare carbon cloth.

Figure S3 SEM image of CoMoO₄-CC.

Figure S4 Low- and high-magnification SEM images of NiMoO₄-CC.

Figure S5 SEM-EDX elemental maps of Mo and Ni for NiMoO₄-CC.

Figure S6 SEM image of IrO₂-CC^a.

Figure S7 Nitrogen adsorption–desorption isotherms of as-synthesized NiMoO₄ nanosheets scratched from the carbon fiber.

Figure S8 C_{1s} core-level XPS of CoMoO₄-CC.

Figure S9 Polarization curve of CoMoO₄ powder sample on a 3 mm glassy carbon electrode.

Figure S10 Low- and high-magnification SEM images of CoMoO₄-CC after stability tests.

Figure S11 Electrochemical cyclic voltammetry curves of NiMoO₄-CC at different potential scanning rates. The selected potential range is 0.12 - 0.32 V vs. RHE where no faradic current was observed.

 Table S1 Comparisons of OER performance for CoMoO₄-CC with other non-noble metal OER electrocatalysts in alkaline media.

Movie S1 This movie shows oxygen evolution on CoMoO₄-CC electrodes in 1.0 M KOH.

Figure S1 Contact angle measurement on the electrode of bare carbon cloth.

Figure S2 Low- and high-magnification SEM images of bare carbon cloth.

Figure S3 SEM image of CoMoO₄-CC.

Figure S4 Low- and high-magnification SEM images of NiMoO₄-CC.

Figure S5 SEM-EDX elemental maps of Mo and Ni for NiMoO₄-CC.

Figure S6 SEM image IrO₂-CC^a.

Figure S7 Nitrogen adsorption–desorption isotherms of as-synthesized NiMoO₄ nanosheets scratched from the carbon fiber.

Figure S8 C_{1s} core-level XPS of CoMoO₄-CC.

Figure S9 Polarization curve of CoMoO₄ powder sample on a 3 mm glassy carbon electrode.

Figure S10 Low- and high-magnification SEM images of CoMoO₄-CC after stability tests.

Figure S11 Electrochemical cyclic voltammetry curves of NiMoO₄-CC at different potential scanning rates. The selected potential range is 0.12 - 0.32 V vs. RHE where no faradic current was observed.

 Table S1 Comparisons of OER performance for CoMoO₄-CC with other non-noble metal OER electrocatalysts in alkaline media.

Catalyst	Electrolyte	Tafel slop	η_{10}	Reference
		(mV dec ⁻¹)	(mV)	
CoMoO ₄ -CC	1.0 M KOH	94	290	This work
NiMoO4-CC	1.0 M KOH	116	353	This work
IrO ₂ -CC ^a	1.0 M KOH	72	354	This work
Co ₃ O ₄ -carbon nanocomposites	1.0 M KOH	47	346	Nano Energy, 2017, 33, 445-452
Mn-Co oxyphosphide	1.0 M KOH	52	370	<i>Angew. Chem. Int. Ed.</i> , 2017, 129, 2426-2429
rGO@CoNiO _x	1.0 M KOH	42	280	<i>Adv. Funct. Mater.</i> , 2017, 27, 1606325-1606334
CoNi(OH) _x nanotubes	1.0 M KOH	77	280	<i>Adv. Energy Mater.</i> , 2016, 6, 1501661- 1501667
NiCo LDH	1.0 M KOH	40	367	<i>Nano Lett.</i> , 2015, 15, 1421-1427
Co ₃ ZnC/Co@CN	1.0 M KOH	81	366	<i>J. Mater. Chem. A</i> , 2016, 4, 9204-9212
CoP hollow polyhedron	1.0 M KOH	57	400	<i>ACS Appl. Mater.Inter.</i> , 2016, 8, 2158-2165
Ni/Mo ₂ C-PC	1.0 M KOH	-	368	<i>Chem. Sci.</i> , 2017, 8, 968- 973
Co-P film	1.0 M KOH	47	345	<i>Angew. Chem. Int. Ed.</i> , 2015, 54, 6251-6254
NiCo ₂ O ₄ core-shell nanowire	1.0 M NaOH	63.1	320	<i>Nano Energy</i> , 2015, 11, 333-340
CoMoO ₄	1.0 M KOH	56	312	<i>Chem. Commun.</i> , 2015, 51, 14361-14364
NiD-PCC	1.0 M KOH	98	360	<i>Energy Environ. Sci.</i> , 2016, 9, 3411-3416
exfoliated NiFe LDH	1.0 M KOH	40	300	Nat. Commun., 2014, 5, 4477-4485
CoMn LDH	1.0 M KOH	43	324	<i>J. Am. Chem. Soc.</i> , 2014, 136, 16481-16484
Co _{2.25} Cr _{0.75} O ₄	1.0 M NaOH	60 ± 3	350	ACS Catal., 2017, 7, 443- 451
Co-C ₃ N ₄ /CNT	1.0 M KOH	68.4	380	<i>J. Am. Chem. Soc.</i> , 2017, 139, 3336-3339
FeO _x /CFC	1.0 M KOH	93	414	<i>J. Mater. Chem. A</i> , 2016, 4, 6048-6055

Movie S1 This movie shows oxygen evolution on CoMoO₄-CC electrodes in 1.0 M KOH.