Supporting information

for

In-Situ Synthesis of Titanium Doped Hybrid Metal-Organic framework UiO-66 with Enhanced Adsorption Capacity for

Organic Dye

Yitong Han^a, Min Liu^a, Keyan Li^a, Qiao Sun^a, Wensheng Zhang^a, Chunshan Song^{ab},

Guoliang Zhang^c, Z. Conrad Zhang^{d*} and Xinwen Guo^{a*}

^a State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China

^b EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States

^c College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China

^d Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China

* Corresponding authors, (X.G.) E-mail: guoxw@dlut.edu.cn, Fax: +86-0411-84986134, Tel: +86-0411-84986133; (Z.Z.) E-mail: zczhang@yahoo.com, Fax: +86-0411-84379462, Tel: +86-0411-84379462.

Fig. S1 Raman spectra of the parent UiO-66 (a), UiO-66-0.7Ti (b), UiO-66-1.4Ti (c), UiO-66-2.1Ti (d), UiO-66-2.7Ti (e) and UiO-66-4.0Ti (f), the excitation wavelength is 532 nm.

The Raman spectrum of an anatase-phase TiO_2 is a combination of six peaks appear at 144 cm⁻¹, 197 cm⁻¹, 399 cm⁻¹, 513 cm⁻¹, 519 cm⁻¹ and 640 cm⁻¹.¹ Therefore, as illustrated in Fig. S1, the Raman spectrum of the Ti⁴⁺ doped UiO-66 samples only show the common features seen for the parent UiO-66,² demonstrating the pure phase of the samples.

Fig. S2 TEM images of UiO-66-2.7Ti with different magnification. (a) 20×10^4 , (b) 10×10^4 , each scale bar is 100 nm.

Sample	XPS for the surface		
	Ti/Zr molar ratio (%)		
UiO-66-0.7Ti	8.6		
UiO-66-1.4Ti	17.2		
UiO-66-2.1Ti	15.7		
UiO-66-2.7Ti	16.1		
UiO-66-4.0Ti	17.3		

Table S1 XPS data for the surface Ti/Zr molar ratio in the UiO-66-nTi MOFs.

Table S2Comparison of weight loss values (%) of the synthesized samples atdifferent temperature interval.

	Weight lo	Stoichiometric ^a		
Sample		450–700 °C		
	30-200	200-350	450-700	
UiO-66	1.9	10.6	43.5	54.6 ³
UiO-66-0.7Ti	3.9	7.3	42.2	-
UiO-66-1.4Ti	5.0	7.1	38.2	-
UiO-66-2.1Ti	6.0	7.2	39.3	-
UiO-66-2.7Ti	6.3	7.3	35.9	-
UiO-66-4.0Ti	1.3	7.5	37.7	-

^a stoichiometrically perfect framework

$C_{32}H_{22}N_6Na_2O_6S_2$	697
C ₁₄ H ₁₄ N ₃ SO ₃ Na	327
$C_{16}H_{18}N_3SCl$	320
C ₂₈ H ₃₁ N ₂ O ₃ Cl	479
	C ₂₈ H ₃₁ N ₂ O ₃ Cl

Table S3 Dyes used in the adsorption experiments in this work. ⁴⁻⁶

Adsorption Kinetics

The experimental data of the adsorption of CR (400 mg·L⁻¹) on the parent UiO-66 and UiO-66-2.7Ti were fit by pseudo-fist-order and pseudo-order kinetic equations to investigate the adsorption kinetic.

Pseudo-first-order equation:
$$\frac{ln^{[m]}(Q_e - Q_t) = lnQ_e - k_1 t}{Q_t}$$
(1)
Pseudo-second-order equation:
$$\frac{t}{Q_t} = \frac{1}{k_2} \cdot \frac{1}{Q_e^2} + \frac{t}{Q_e}$$
(2)

where Q_e (mg·g⁻¹) is the equilibrium adsorption capacity, Q_t (mg·g⁻¹) is the adsorption capacity at time *t* (min), and k_1 (min⁻¹) and k_2 (g·min⁻¹·mg⁻¹) are rate constants of the pseudo-first-order and pseudo-second-order equations, respectively.

Fig. S3 Plots of pseudo-second-order kinetics for the adsorption of CR on the parent UiO-66 and UiO-66-2.7Ti.

Table S4 Kinetic parameters of the adsorption of CR on the parent UiO-66 and UiO-66-2.7Ti.

0		Pseudo-first-order-model			Pseudo-second-order-model		
Sample	$(\operatorname{mg} \cdot \operatorname{g}^{-1})$	Qe, cal	k_l	<i>R</i> ²	Qe, cal	k_2 (g·min ⁻	R ²
(1115	($(mg \cdot g^{-1})$	(min ⁻¹)	R	$(mg \cdot g^{-1})$	$^{1} \cdot mg^{-1}$)	R
UiO-66	251	68	0.0163	0.4993	256	6.2536×10 ⁻⁴	0.9987
UiO-66-2.7Ti	607	557	0.0412	0.7112	625	2.3681×10-4	0.9999

Adsorption Isotherms

Langmuir and Freundlich equations were used for describing the adsorption of CR on the samples.

$$\frac{C_e}{C_e} = \frac{1}{K_l} \cdot \frac{1}{Q_m} + \frac{C_e}{Q_m}$$
(3)

The Langmuir equation

The Freundlich equation: $lnQ_e = lnK_f + \frac{1}{n} \cdot lnC_e$

where C_e (mg·L⁻¹) is equilibrium concentration of dye solution, Q_e (mg·g⁻¹) is the amount adsorbed at equilibrium, $Q_m \,(\mathrm{mg} \cdot \mathrm{g}^{-1})$ represents the adsorption capacity limit

(4)

of CR per unit mass of adsorbent, K_l (L·mg⁻¹) is a Langmuir constant which indicates the affinity of CR toward the adsorbent. K_f (mg^{1-1/n}·L^{1/n}·g⁻¹) and 1/n are Freundlich constants, related to adsorption capacity and adsorption intensity, respectively.

Fig. S4 Langmuir plots of isotherms for the adsorption of CR on the parent UiO-66, UiO-66-1.4Ti and UiO-66-2.7Ti.

Table S5Langmuir and Freundlich model parameters of the adsorption of CR on theparent UiO-66, UiO-66-1.4Ti and UiO-66-2.7Ti.

	Lang	gmuir isothe	erm	Freundlich isotherm		
sample	Qm	K_l	R^2	K_{f}	n	R^2
	$(mg \cdot g^{-1})$	$(L \cdot mg^{-1})$		$(mg^{1-1/n}L^{1/n}g^{-1})$		
UiO-66	313	0.0122	0.9853	88.4626	5.6863	0.1249
UiO-66-1.4Ti	575	0.0061	0.9901	58.9241	3.1326	0.8382
UiO-66-2.7Ti	1315	0.0025	0.9892	29.8144	1.9903	0.9537

Synthesis of sample UiO-66(Ti)

UiO-66(Ti) was synthesized via a modified post-grafting method. TOPT was mixed with 0.2 g the as-synthesized parent UiO-66 in 20 mL of toluene, and then the mixture was heated at 110 °C for 24 h. In order to compare the adsorption capacity with UiO-66-2.7Ti, the feeding molar ratio of Ti/Zr in the synthesis was 20% (the

mass percentage of Zr in the parent UiO-66 was calculated by the TGA data). After the treatment, the obtained sample was washed by toluene and methanol for several times and dried at 60 °C under vacuum.

Fig. S5 UV-vis adsorption spectra of CR before (black curve) and after (red and blue curves) adsorption treatment with UiO-66-2.7Ti and UiO-66(Ti) (t = 4 h, pH = 7, dyes = $1000 \text{ mg} \cdot \text{L}^{-1}$, does = $0.5 \text{ g} \cdot \text{L}^{-1}$, T = 35 °C).

Comula	Zeta potentials		
Sample	(mV)		
UiO-66	-10.2		
UiO-66-0.7Ti	4.8		
UiO-66-1.4Ti	25.9		
UiO-66-2.1Ti	57.1		
UiO-66-2.7Ti	59.2		
UiO-66-4.0Ti	60.0		

Table S6 Zeta potentials of the synthesized samples in ultrapure water (pH = 7).

Fig. S6 XRD patterns of UiO-66-2.7Ti after the adsorption of CR at various pHs.

Fig. S7 SEM image of CR-adsorbed UiO-66-2.7Ti.

References

- 1 H. C. Choi, Y. M. Jung and S. B. Kim, Vib. Spectrosc, 2005, 37, 33-38.
- M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino and K. P. Lillerud, *Chem. Mater.*, 2010, 22, 6632–6640.
- 3 L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen, S. Jakobsen, K.
 P. Lillerud and C. Lamberti, *Chem. Mater.*, 2011, 23, 1700–1718.
- 4 J. S. Wu, J. S. Wang, H. Y. Li, Y. C. Du, K. L. Huang and B. X. Liu, J. Mater.

Chem. A, 2013, 1, 9837–9847.

- 5 H. L. Zhang, X. C. Li, G. H. He, J. J. Zhan and D. Liu, *Ind. Eng. Chem. Res.*, 2013, **52**, 16902–16910.
- 6 S. K. Wu, X. P. Shen, H. Zhou, G. X. Zhu, R. Y. Wang, Z. Y. Ji, K. M. Chen and C. J. Chen, J. Colloid Interface Sci., 2016, 464, 191–197.