Supplementary Information for

Synthesis of Ceria Supported Iron-Ruthenium Oxide Catalyst and Its Structural Transformation from Subnanometer Clusters to Single Atoms during Fischer-Tropsch Synthesis Reaction

Xu Wang^{a,b}, Xin-Pu Fu^c, Wen-Zhu Yu^c, Chao Ma^{d,*}, Chun-Jiang Jia^{c,*}, Rui Si^{a,*}

^a Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics,

Chinese Academy of Sciences, Shanghai 201204, China

^b University of Chinese Academy of Science, Beijing 10049, China

^c Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

^{*d*} Center for High Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

Catalyst	Т	Conditions	CO conv.	Activity	Selectivity				
	(°C)		(%)	$(10^{-5} mol_{CO} \cdot g_{Fe}^{-1} \cdot s^{-1})$	CO_2	CH_4	C_2 - C_4	C_{5+}	Kei.
10wt.%Fe ₂ O ₃ /Al ₂ O ₃	260	$H_2/CO=2$; 2000 mL·h ⁻¹ ·g _{Cat} ⁻¹ ;	10.5	0.9	11.6	15.1	35.5	49.4	21
	300	2 MPa	22.2	2.0	21.0	28.9	41.8	29.3	
5wt.%Fe/CNTs	300	H ₂ /CO=1; 4200 mL·h ⁻¹ ·g _{Cat} ⁻¹ ; 1 MPa	14.4	2.7	18.6	22.2	52.4	25.4	25
9wt.%Fe ₅ C ₂ /SiO ₂	270	H ₂ /CO=2; 15000 mL·h ⁻¹ ·g _{Cat} ⁻¹ ; 3 MPa	39.0	23.6	39	42	19	39	38
ε-Fe₂C	150	H ₂ /CO=2; 3 MPa	85	7.9	10	9	15	76	
	170		76	21.3	18	16	30	54	24
	200		36	35.2	24	27	45	28	
4.7wt.%Fe ₂ O ₃ /CeO ₂	250		0.8	1.5	25	16	41	43	
(Fe_Ce)	300	$H_2/CO=1$; 12000 mL·h ⁻¹ ·g _{Cat} ⁻¹ ;	8.7	16.9	26	13	37	50	our
4.8wt.%Fe ₂ O ₃ /0.3wt.%Ru/CeO ₂	250	2 MPa	7.1	13.4	47	34	52	14	work
(FeRu_Ce)	300		15.7	28.4	45	27	45	28	

Table S1. Comparison of FTS activities over the representative iron catalysts.

Figure S1. XANES profiles for linear combination fits results on Fe K edge of fresh (a,c) and used (b,d) ceria-supported iron-ruthenium oxide samples: (a,b) **Fe_Ce**; (c,d) **FeRu_Ce**.

Figure S2. XANES profiles for linear combination fits results on Ru K edge of fresh (a,c) and used (b,d) ceria-supported iron-ruthenium oxide samples: (a,b) **Ru_Ce**; (c,d) **FeRu_Ce**.

Figure S3. EXAFS results in *R* space for ceria-supported iron-ruthenium oxide samples and standard model: (a) Fe K edge; (b) Ru K edge

Figure S4. XPS spectra of C 1s for ceria-supported iron-ruthenium oxide samples.