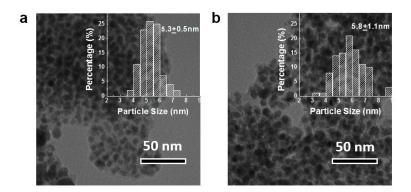
Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information for:

NiCo bimetallic nanoparticles encapsulated in graphite-like

carbon layers as efficient and robust hydrogenation

catalysts


Ting Ni,^a Sai Zhang, *^a Fangxian Cao^a and Yuanyuan Ma*^a

[†] Center for Applied Chemical Research, Frontier Institute of Science and Technology

and School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an,

710049, China.

Email: yyma@mail.xjtu.edu.cn; zhanqsai1112@163.com

 $\textbf{Figure S1.} \ \ \text{TEM images of (a) Ni}_{0.25} Co_{0.75} @ \text{NC and (b) Ni}_{0.75} Co_{0.25} @ \text{NC catalysts}.$

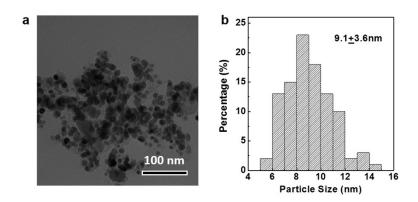
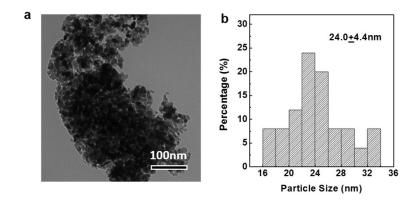



Figure S2. (a) TEM image and (b) size distribution of the Co@NC nanoparticles.

 $\textbf{Figure S3.} \ (a) \ \mathsf{TEM} \ \mathsf{image and} \ (b) \ \mathsf{size} \ \mathsf{distribution} \ \mathsf{of} \ \mathsf{the} \ \mathsf{Ni@NC} \ \mathsf{nanoparticles}.$

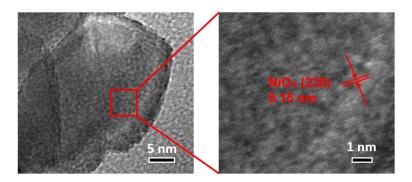


Figure S4. HRTEM images of the Ni@NC catalysts.

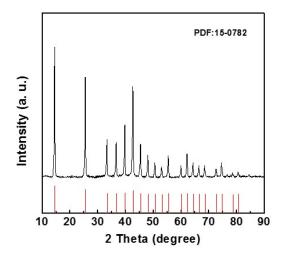
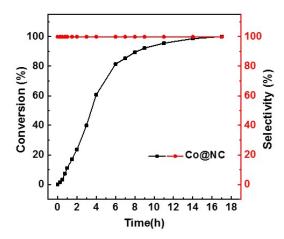
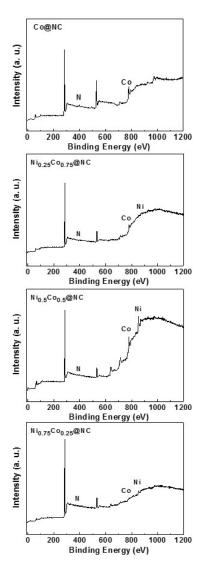





Figure S5. XRD pattern of the Ni(HCO₃)₂ precursor.

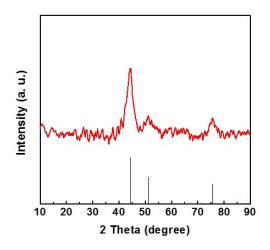

Figure S6. The time course of catalytic activity and chemoselectivity of the Co@NC catalysts for hydrogenation of 4-chlorostyrene.

Figure S7. XPS spectra of various $Ni_xCo_{1-x}@NC$ (x=0, 0.25, 0.5, 0.75) catalysts.

Figure S8. (a) The time course of catalytic activity of the $Ni_{0.5}Co_{0.5}@NC$ and NiCo/C catalysts for hydrogenation of 4-chlorostyrene. (b) TEM image of the NiCo/C nanoparticles.

 $\textbf{Figure S9.} \ \, \textbf{XRD pattern of the used Ni}_{0.5} \textbf{Co}_{0.5} \textbf{@NC catalysts after 8 cycles of hydrogenation reactions.}$

Table S1. Chemical compositions of the Ni $_{x}$ Co $_{1-x}$ @NC catalysts by ICP measurements.

Sample	Ni content (wt%)	Co content (wt%)	C content (wt%)
Ni _{0.25} Co _{0.75} @NC	17.04	73.64	9.32
Ni _{0.5} Co _{0.5} @NC	46.42	44.26	9.32
Ni _{0.75} Co _{0.25} @NC	68.68	22.83	8.49
Co@NC	0	90.86	9.14

Table S2. The optimization of reaction conditions for hydrogenation of 4-chlorostyrene*

$$CI \longrightarrow \begin{array}{c} Ni_{0.5}Co_{0.5}@NC \\ \hline \end{array} \longrightarrow \begin{array}{c} CI \longrightarrow \\ \hline \end{array}$$

Entry	Temperature (°C)	Pressure (MPa)	Time (h)	Conv. (%)	Sel. (%)
1	40	2	1	15.9	99.9
2	60	2	1	90.7	99.9
3	80	2	1	100	99.9
4	60	1	3	66.4	99.9
5	60	1.5	3	87.5	99.9
6	60	2	3	100	99.9

^{*4-}chlorostyrene (1 mmol), isopropanol (1 mL), $Ni_{0.5}Co_{0.5}@NC$ catalyst (10 mg). The conversion and selectivity were determined by GC-MS and GC with m-xylene as internal standard.