Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supplementary Material

Metal-organic Frameworks Immobilized RhNi Alloy Nanoparticles for Complete H_2 Evolution from Hydrazine Borane and Hydrous Hydrazine

Zhujun Zhang,^a Shiliang Zhang,^a Qilu Yao,^a Gang Feng,^b Meihua Zhu,^a Zhang-Hui Lu^{*a}
^aInstitute of Advanced Materials, College of Chemistry and Chemical Engineering,
Jiangxi Normal University, Nanchang 330022, China.

^bCollege of Chemistry, Nanchang University, Nanchang 330031, China.

^{*}E-mail: luzh@jxnu.edu.cn

Calculation method for TOF

The total turn-over frequency (TOF) reported in this work is an apparent TOF value based on the number of metal (Rh + Ni) atoms in catalysts, which is calculated from the equation as follows:

$$TOF = \frac{n_{H_2}}{n_{(Rh+Ni)} \times t}$$
 (Eq. S1)

Where n_{H2} is the mole number of generated H_2 , $n_{(Rh+Ni)}$ is the total mole number of Ni and Rh in catalyst and t is the completed reaction time in hour. The TOF values of all the cited catalysts shown in Table 1 and Table S2 are the total TOF values and are normalized to the mass of metals.

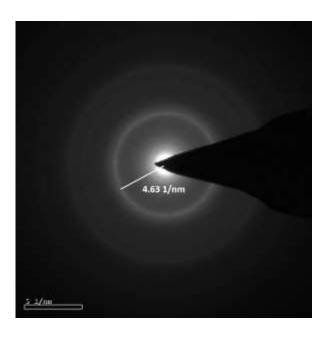


Fig. S1 SAED image of $Rh_{0.8}Ni_{0.2}/MIL$ -101 catalyst.

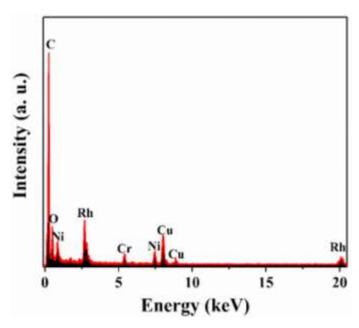


Fig. S2 EDX spectrum of $Rh_{0.8}Ni_{0.2}/MIL$ -101 catalyst.

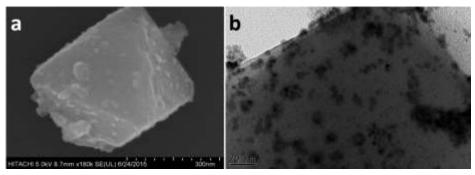
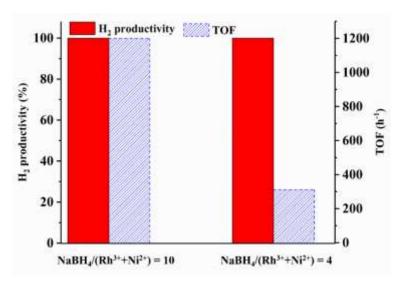
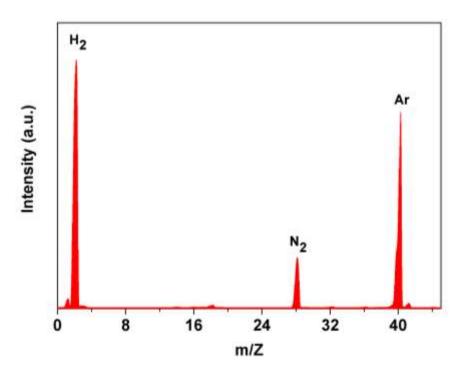




Fig. S3 The typical SEM (a) and TEM (b) images of the $Rh_{0.8}Ni_{0.2}/MIL$ -101 catalyst obtained via a slow reduction process with a low molar ratio of reductant $(NaBH_4/(Rh^{3+}+Ni^{2+})=4)$.

 $\label{eq:Fig.S4} \textbf{Fig. S4} \ \ \text{Catalytic performance of } \ Rh_{0.8}Ni_{0.2}/MIL\text{-}101 \ \ \text{catalysts obtained with different molar ratio of reductant } \ \ (NaBH_4/(Rh^{3+}+Ni^{2+}).$

 $\label{eq:Fig.S5} \textbf{Mass spectral profile for gases released from the aqueous $N_2H_4BH_3$ solution using $Rh_{0.8}Ni_{0.2}/MIL-101$ catalyst under an argon atmosphere.}$

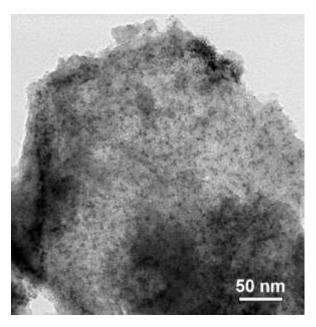


Fig. S6 TEM image of the $Rh_{0.8}Ni_{0.2}/MIL$ -101 catalyst after the durability test.

Table S1. Catalysts composition determined by inductively coupled plasma atomic emission spectroscopic (ICP-AES).

Catalysts	Ni (wt%)	Rh (wt%)	Rh:Ni (atomic ratio)
Ni/MIL-101	10.0	~	~
Rh/MIL-101	~	16.7	~
Rh _{0.8} Ni _{0.2} /MIL-101	1.9	13.5	80.2:19.8

Table S2 Activities in terms of selectivity, activation energy and *TOF* values of different catalysts tested in H₂ generation from hydrous hydrazine.

Catalyst	T (°C)	Selectivity (%)	E_a (kJ/mol)	<i>TOF</i> (h ⁻¹) ^a	Ref.
Rh	25	44	-	2.9	38
$\mathrm{Rh_4Ni}$	25	100	-	6.0	39
$Rh/Ni@SiO_2$	25	99.4		66	40
RhNi@graphene	25	100	-	20.1	41
$Ni_{0.90}Pt_{0.05}Rh_{0.05}/La_2O_3$	25	100	-	45.9	42
Rh-Cu NOHFs/C	25	31.4	-	33.7	43
$Rh_{51}Ni_{19}P_{30}/rGO$	25	100	58.8	101	49
RhNiB	30	100	-	54.5	44
$Rh_{0.8}Ni_{0.2}@CeO_x/rGO$	30	100	58.0	36.4	21
Ni ₃ Rh ₇ /NPC-900	50	100	-	156	46
Ni ₆₆ Rh ₃₄ @ZIF-8	50	100	58.1	140	47
Rh ₅₈ Ni ₄₂ @MIL-101	50	100	33.0	344	50
Rh ₅₅ Ni ₄₅ /Ce(OH)CO ₃	50	100	38.8	395	45
Rh _{0.8} Ni _{0.2} /MIL-101	50	100	48.4	428.6	This study
$Rh_{92.6}P_{7.4}/rGO$	50	100	50.5	843.9	48

 $^{^{\}mathrm{a}}$ The total TOF values were calculated according to the original data provided by the reports.