Electronic Supplementary Information

Excellent rate capability of nitrogen-rich sandwich-like carbon nanosheets as anode material for lithium-ion batteries

Hailiang Chu, Chunfeng Shao, Shujun Qiu,* Yongjing Zou, Cuili Xiang, Fen Xu, Lixian Sun*

Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials and School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, PR China

*Authors to whom correspondence should be addressed Tel.: +86-773-2216607, Fax: +86-773-2290129, Email: qiushujun@guet.edu.cn (Shujun Qiu) Tel.: +86-773-2303763, Email: sunlx@guet.edu.cn (Lixian Sun)

Fig. S1 SEM images of (a) NSCN-600, (b) NSCN-700, and (c) NSCN-800.

Fig. S2 SEM images of (a) the as-prepared CS and (b) PC-600.

Fig. S3 High-resolution spectra of the C 1s XPS peaks of (a) NSCN-600, (b) NSCN-

700, (c) NSCN-800.

Samples		Current density	Cycles	Specific capacity	Ref.
boron-doped	carbon	100 mA g ⁻¹	80	460 mA h g ⁻¹	S 1
nanosheets					S2
HPC		100 mA g ⁻¹	100	410 mA h g ⁻¹	
		500 mA g ⁻¹		280 mA h g ⁻¹	S3
N-PCS		500 mA g ⁻¹	100	540 mA h g ⁻¹	S4
N-DHCSs		558 mA g ⁻¹	300	512 mA h g ⁻¹	S 5
N-OMC-4		300 mA g ⁻¹	300	506 mA h g ⁻¹	S 6
MSC		50 mA g ⁻¹	200	200 mA h g ⁻¹	S 7
Carbon nanofibers		100 mA g ⁻¹	50	308 mA h g ⁻¹	S 8
N-3D GFs		200 mA g ⁻¹	100	1094 mA h g ⁻¹	
		500 mA g ⁻¹		750 mA h g ⁻¹	
CMK-8		100 mA g ⁻¹	100	569 mA h g ⁻¹	S 9
		500 mA g ⁻¹		300 mA h g ⁻¹	
Sandwich-like		500 mA g ⁻¹	100	1070 mA h g ⁻¹	S10
PNCs@Gr					
C-600		186 mA g ⁻¹	600	466 mA h g ⁻¹	S11
LHPC		200 mA g ⁻¹	400	470 mA h g ⁻¹	S12
N-doped graphene		50 mA g ⁻¹	50	1136 mA h g ⁻¹	S13
NCNFs		100 mA g ⁻¹	160	412 mA h g ⁻¹	S14
NMC-2		100 mA g ⁻¹	50	610 mA h g ⁻¹	S15
NSCN-600		100 mA g ⁻¹	50	910 mA h g ⁻¹	This
		500 mA g ⁻¹	200	716 mA h g ⁻¹	work

Table S2 Comparison of the electrochemical performance for NSCN-600 andprevious reported carbon materials.

References

- S1 Y. Yang, J. Zhang, X. Wu, Y. Fu, H. Wu, S. Guo, J. Mater. Chem. A, 2014, 2, 9111.
- S2 X. Yang, C. Li, G. Zhang, C. Yang, J. Mater. Sci, 2015, 50, 6649.
- S3 D. Li, L.X. Ding, H. Chen, S. Wang, Z. Li, M. Zhu, H. Wang, J. Mater. Chem. A, 2014, 2, 16617.
- S4 K. Zhang, X. Li, J. Liang, Y. Zhu, L. Hu, Q. Cheng, C. Guo, N. Lin, Y. Qian, *Electrochim. Acta*, 2015, 155, 174.
- S5 J. Zhu, J. Yang, R. Miao, Z. Yao, X. Zhuang, X. Feng, J. Mater. Chem. A, 2016, 4, 2286.
- S6 B. Cao, H. Liu, B. Xu, Y. Lei, X. Chen, H. Song, J. Mater. Chem. A, 2016, 4, 6472.
- S7 Q. Sun, X.Q. Zhang, F. Han, W.C. Li, A.H. Lu, J. Mater. Chem, 2012, 22, 17049.
- S8 X. Liu, Y. Wu, Z. Yang, F. Pan, X. Zhong, J. Wang, L. Gu, Y. Yu, J. Power Sources, 2015, 293, 799.
- S9 D. Saikia, T. Wang, C. Chou, J. Fang, L. Tsai, H. Kao. RSC Adv. 2015, 5, 42922.
- S10 Z. Xie, Z. He, X. Feng, W. Xu, X. Cui, J. Zhang, ACS Appl. Mater. Interfaces, 2016, 8, 10324.
- S11 W. Guo, X. Li, J. Xu, H.K. Liu, J. Ma, S.X. Dou. *Electrochim. Acta*. 2016, **188**, 414.
- S12 W. Zhang, J. Yin, Z. Lin, H. Lin, H. Lu, Y. Wang, W. Huang, *Electrochim. Acta*, 2015, **176**, 1136.
- S13 D. Cai, S. Wang, P. Lian, X. Zhu, D. Li, W. Yang, H. Wang, *Electrochim. Acta*, 2013, 90, 492.
- S14 J. Guo, J. Liu, H. Dai, R. Zhou, T. Wang, C. Zhang, S. Ding, H. G. Wang, J. Colloid Interface Sci, 2017, 507, 154.
- S15 C. Shao, Z. Wang, E. Wang, S. Qiu, H. Chu, Y. Zou, C. Xiang, F. Xu L. Sun, New J. Chem., 2017, 41, 12901-12909.