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Table S1 Experimental conditions for the preparation of M@UiO-66-NH2/R by γ-ray 
radiation reduction.a

Sample Precursor
Concentration of 

precursor (M)

Dose rate
(Gy/min)

Absorbed Dose
(kGy)

1 100 6

2 100 18

3 100 36

4

K2PdCl4 0.005

25 18

5 K2PdCl4 0.002 100 18

6 K2PdCl4 0.010 100 18

7 K2PtCl4 0.005 100 18

8 KAuCl4 0.005 100 18
a Other conditions: 50 mg of UiO-66-NH2, 5 mL of deionized water, and 0.2 mL of isopropyl 

alcohol were used.

Fig. S1 PXRD patterns of (a) HKUST-1 before and after γ-ray radiation, (b) MIL-101 

before and after γ-ray radiation, (c) ZIF-8 before and after γ-ray radiation, and (d) 

UiO-66-NH2 before and after γ-ray radiation (The MOFs samples were dispersed into 

water or exposed into air and irradiated with an absorbed dose of 36 kGy at a dose 

rate of 100 Gy/min).
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Fig. S2 TEM images of Pd@UiO-66-NH2/R synthesized by γ-ray radiation with 

different absorbed doses and/or dose rates: (a) 6 kGy and 100 Gy/min; (b) 18 kGy and 

100 Gy/min; (c) 36 kGy and 100 Gy/min; (d) 18 kGy and 25 Gy/min.

Table S2 Pd@UiO-66-NH2/R synthesized under different absorbed doses and/or dose 

rates.

Pd content (wt %)

Sample Dose rate
Absorbed 

dose
Theoretical 

value
ICP-MS result

Loading 

efficiency (%)

1 100 Gy/min 6 kGy 0.89 16.7

2 100 Gy/min 18 kGy 3.55 66.5

3 100 Gy/min 36 kGy 4.06 76.0

4 25 Gy/min 18 kGy

5.34

3.84 71.8

mailto:6.90wt%25Pd@uio-66
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Fig. S3 TEM images of Pd@UiO-66-NH2/R and the histograms of the size 

distribution of the corresponding Pd NCs synthesized by γ-radiation of UiO-66-NH2 

impregnated with different concentrations of K2PdCl4: (a) 0.002 M, (b) 0.005 M, and 

(c) 0.010 M.

mailto:6.90wt%25Pd@uio-66
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Table S3 Metal contents and corresponding diameters of various metal NPs@UiO-

66-NH2.

aThe synthetic condition was the same as the sample 2 but H2 reduction was used in the 

synthesis instead of using γ-ray radiation.
bThe synthetic condition was the same as the sample 2 but NaBH4 reduction was used in the 

synthesis instead of using γ-ray radiation.
cThe average particle diameter was measured from 100 particles in the HRTEM images.

Table S4 BET surface area and pore volume of M@UiO-66-NH2 and 3.55 wt% 

Pd@UiO-66-NH2/R after cycling tests.

Sample BET (m2 g-1) Pore Volume (cm3 g-1)

UiO-66-NH2 1126.2 0.46

1 (Pd) 782.4 0.31

2 (Pd) 750.6 0.30

2 (Pd) after cycling tests 687.9 0.29

9 (Pd) 608.1 0.22

10 (Pd) 584.8 0.21

7 (Pt) 708.2 0.41

8 (Au) 677.4 0.29

Metal content (wt%)

Sample Theoretical 

value

ICP-MS 

result

XPS

data

Loading 

efficiency 

(%)

Diameter of 

metal NCsc

(nm)

2 (Pd) 5.34 3.55 0.43 66.5 1.9

5 (Pd) 2.16 1.52 0.24 70.4 1.7

6 (Pd) 10.69 6.90 1.07 64.5 3.7

9a (Pd) 5.34 2.12 0.54 39.7 2.9

10b (Pd) 5.34 2.35 0.44 44.0 3.3

7 (Pt) 9.78 5.48 - 56.0 1.1

8 (Au) 9.91 7.48 - 75.5 1.0
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Fig. S4 TEM images of (a1-3) Pd@UiO-66-NH2/R (3.55 wt% Pd), (b1-3) Pd@UiO-66-

NH2/H, and (c1-3) Pd@UiO-66-NH2/B: (a1, b1, c1) as-synthesized samples, (a2, b2, c2) 

after five cycles of catalytic tests, (a3, b3, c3) after calcination in air at 250 °C for 2 h.

Fig. S5 XPS spectra of Pd@UiO-66-NH2/R (3.55 wt% Pd), Pd@UiO-66-NH2/H, and 

Pd@UiO-66-NH2/B.
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Fig. S6 Digital photographs of as-synthesized UiO-66-NH2, Pd@UiO-66-NH2/R 

(3.55 wt% Pd), Pd@UiO-66-NH2/B, and Pd@UiO-66-NH2/H.
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Fig. S7 1H NMR spectra of products obtained after the hydrogenation reaction of 

tetraphenylethylene using different catalysts: (a) Pd@UiO-66-NH2/R (3.55 wt% Pd) 

and (b) Pd/C. The absence of the corresponding peak around 4.7 ppm clearly indicates 

that the hydrogenation reaction could not occur using Pd@UiO-66-NH2/R.
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Table S5 Summary of the performance of the recently reported catalysts for the 
hydrogenation of styrene.

 

Catalyst TOF (min-1) Ref

Pd@MOF-3 0.234 Inorg. Chem., 2016, 55, 2345

Pd/MOF-5 0.212 J. Mater. Chem., 2007, 17, 3827

Pd/MIL-101 1.094 Chem. Commun., 2008, 35, 4192

Pd/UiO-66 0.588

Pd/UiO-66@PDMS-60 2.308
Angew. Chem. Int. Ed., 2016, 55, 7379

Ni@MesMOF 0.796 Chem. Commun., 2010, 46, 3086

Pd/C 0.50 This work

1.52 wt% Pd@UiO-66-NH2/R 2.222 This work

3.55 wt% Pd@UiO-66-NH2/R 2.0 This work

6.90 wt% Pd@UiO-66-NH2/R 1.429 This work

Pd@UiO-66-NH2/B 0.714 This work

Pd@UiO-66-NH2/H 0.769 This work
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Fig. S8 Hot-filtration tests for the catalytic hydrogenation of styrene over Pd@UiO-

66-NH2 catalysts synthesized via different reduction methods (the molar ratio of 

Pd:styrene = 1:100).
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Fig. S9 PXRD patterns of Pd@UiO-66-NH2/R (3.55 wt% Pd) before and after five 

cycling tests.
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Fig. S10 Nitrogen adsorption and desorption isotherms of UiO-66-NH2/R (3.55 wt% 

Pd) before and after five cycling tests.
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Fig. S11 XPS spectra of Pd@UiO-66-NH2/R (3.55 wt% Pd) before and after five 

cycling tests.
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Fig. S12 UV-Vis absorption spectra recording the reduction process of 4-nitrophenol 

completed in 355 s for Pd@UiO-66-NH2/R (3.55 wt% Pd).

Fig. S13 UV-Vis absorption spectra recording the reduction process of 4-nitrophenol 

completed in 580 s for Pd@UiO-66-NH2/B.
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Fig. S14 UV-Vis absorption spectra recording the reduction process of 4-nitrophenol 

completed in 640 s for Pd@UiO-66-NH2/H.

Fig. S15 UV-Vis absorption spectra recording the reduction process of 4-nitrophenol 

completed in 860 s for Pd/C catalyst.
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Table S6 Summary of the performance of the recently reported Pd-based catalysts for 
reduction of 4-nitrophenol.

Catalyst
Kinetic constant 

kapp (min-1)
Ref

Fe3O4@TiO2/Au@SiO2/Pd 0.23887 Chem. Commun., 2013, 49, 7596

Pd@Au core–shell nanotetrapod 0.139 Nanoscale, 2014, 6, 9273

Pd/C 0.5298 Nanoscale, 2013, 5, 1843

Pd/SBA15 0.708 J. Supercrit. Fluids, 2011, 56, 213

Pd@MIL-101 0.1137 Funct. Mater. Let., 2012, 5, 1250039

Pd/Magnetic porous carbon 0.72 J. Mater. Chem. A, 2014, 2, 18775

Pd@MIL-88B 1.09 RSC Adv., 2015, 5, 46583

Pd@UiO-66-NH2/R 1.455 This work

Pd@UiO-66-NH2/B 1.126 This work

Pd@UiO-66-NH2/H 1.123 This work

Pd/C 0.341 This work
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Fig. S16 PXRD patterns of simulated UiO-66-NH2, Pd@UiO-66-NH2/R, Pt@UiO-

66-NH2/R, and Au@UiO-66-NH2/R.

Fig. S17 The nitrogen adsorption and desorption isotherms of UiO-66-NH2, Pt@UiO-

66-NH2/R, and Au@UiO-66-NH2/R.

mailto:5.48%25%20Pt@uio-66-nh2
mailto:5.48%25%20Pt@uio-66-nh2
mailto:7.48%25Au@uio-66-nh2
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Fig. S18 TEM images of (a) Pd@MIL-101/R with an average diameter of ~1.9 nm 

and (b) Pt@MIL-101/R with an average diameter of ~1.7 nm synthesized through γ-

ray radiation method.

The synthesis procedure of Pd@MIL-101/R is identical with Pd@UiO-66-

NH2/R (see experimental section for details) except UiO-66-NH2 was replaced by 50 

mg of activated MIL-101. The same procedure was also used to synthesize Pt@MIL-

101/R. In this case, 5 mL K2PtCl4 aqueous solution (0.005 M) was used (Table S1).


