Electronic Supplementary Information

Synthesis and photophysical properties of porphyrin-BODIPY dyad and porphyrin-*o*-carborane-BODIPY triad

Ekin Berksun,^a Ilgın Nar,^a Armağan Atsay,^a İbrahim Özçeşmeci,^a Ali Gelir,^b Esin Hamuryudan^{*a}

^aIstanbul Technical University, Chemistry Department, 34469, Maslak, Istanbul, TURKEY. ^bIstanbul Technical University, Physics Department, 34469, Maslak, Istanbul, TURKEY. ^{*}e-mail: esin@itu.edu.tr

Table of Contents

Experimental section	2
Scheme S1: Synthetic routes for the preparation of 1.	2
Scheme S2: Synthetic routes for the preparation of 1b.	3
Scheme S3: Synthetic routes for the preparation of 2.	3
FTIR, UV-vis, Emission, NMR and Mass spectra of 3 and 4.	4
Figure S1: FTIR spectrum of 3	4
Figure S2: FTIR spectrum of 4	4
Figure S3: Normalized UV-vis and emission spectra of 3. (Excited at 424 nm.)	5
Figure S4: Normalized UV-vis and emission spectra of 3. (Excited at 506 nm.)	5
Figure S5: Normalized UV-vis and emission spectra of 4. (Excited at 424 nm.)	6
Figure S6: Normalized UV-vis and emission spectra of 4. (Excited at 506 nm.)	6
Figure S7: ¹ H NMR spectrum of 3 in CDCl ₃ .	7
Figure S8: ¹³ C NMR spectrum of 3 in CDCl ₃ .	7
Figure S9: COSY spectrum of 3 in CDCl ₃ .	8
Figure S10: HSQC spectrum of 3 in CDCl ₃ .	9
Figure S11: HMBC spectrum of 3 in CDCl ₃	
Figure S12: ¹ H NMR spectrum of 4 in CDCl ₃ .	11
Figure S13: ¹³ C NMR spectrum of 4 in CDCl ₃ .	11
Figure S14: COSY spectrum of 4 in CDCl ₃ .	
Figure S15: HSQC spectrum of 4 in CDCl ₃ .	
Figure S16: HMBC spectrum of 4 in CDCl ₃	14
Figure S17: ¹⁹ F NMR spectrum of 3 and 4 in CDCl ₃	14
Figure S18: ¹¹ B NMR spectrum of 3 and 4 in CDCl ₃	
Figure S19: MALDI TOF mass spectrum of 3	
Figure S20: MALDI TOF mass spectrum of 4	
Figure S21: Molecular structure of 4.	17
References	

Experimental section

(1)

Scheme S1: Synthetic routes for the preparation of 1.

meso-Tetraphenylporphyrin ¹, meso-Tetraphenylzincporphyrin $(1a)^2$, 5-(4-Nitrophenyl)-5-(4-Aminophenyl)-10,15,20-triphenylporphyrin³, 10,15,20-triphenylporphyrin³, 5-(4-Iodophenyl)-10,15,20-triphenyl porphyrin 4 5-(4-Iodophenyl)-10,15,20and triphenylzincporphyrin $(1)^4$ were synthesized according to literature methods.

5-(4-hydroxymethylbutyn)-10,15,20-triphenylporphyrin 5-(

5-(4-hydroxymethylbutyn)-10,15,20-triphenylzincporphyrin

(1b)

Scheme S2: Synthetic routes for the preparation of 1b.

5-(4-hydroxymethylbutyn)-10,15,20-triphenylporphyrin,⁵ 5-(4-hydroxymethylbutyn)-10,15,20-triphenylzincporphyrin 5 and 5-(4-etynyl)-10,15,20-triphenylzincporphyrin (**1b**)⁵ were synthesized according to literature methods.

Scheme S3: Synthetic routes for the preparation of 2. 4-((trimethylsilyl)ethynyl)benzaldehyde (2a)⁶, 4-(ethynyl)benzaldehyde (2b)⁶, etynylbodipy (2)⁶ were synthesized according to literature methods.

FTIR, UV-vis, Emission, NMR and Mass spectra of 3 and 4.

Figure S2: FTIR spectrum of 4.

Figure S3: Normalized UV-vis and emission spectra of 3. (Excited at 424 nm.)

Figure S4: Normalized UV-vis and emission spectra of 3. (Excited at 506 nm.)

Figure S5: Normalized UV-vis and emission spectra of 4. (Excited at 424 nm.)

Figure S6: Normalized UV-vis and emission spectra of 4. (Excited at 506 nm.)

Figure S7: ¹H NMR spectrum of **3** in CDCl₃.

Figure S8: ¹³C NMR spectrum of 3 in CDCl₃.

Figure S9: COSY spectrum of 3 in CDCl₃.

Figure S10: HSQC spectrum of 3 in CDCl₃.

Figure S11: HMBC spectrum of 3 in CDCl₃.

Figure S12: ¹H NMR spectrum of 4 in CDCl₃.

Figure S13: ¹³C NMR spectrum of 4 in CDCl₃.

Figure S14: COSY spectrum of 4 in CDCl₃.

Figure S15: HSQC spectrum of 4 in CDCl₃.

Figure S16: HMBC spectrum of 4 in CDCl₃.

Figure S17: ¹⁹F NMR spectrum of 3 and 4 in CDCl₃.

Figure S18: ¹¹B NMR spectrum of 3 and 4 in CDCl₃.

Figure S19: MALDI TOF mass spectrum of 3.

Figure S20: MALDI TOF mass spectrum of 4.

References

- 1. A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, *The Journal of Organic Chemistry*, 1967, 32, 476-476.
- 2. C. He, Q. He, C. Deng, L. Shi, D. Zhu, Y. Fu, H. Cao and J. Cheng, *Chemical Communications*, 2010, 46, 7536-7538.
- 3. R. Luguya, L. Jaquinod, F. R. Fronczek, M. G. H. Vicente and K. M. Smith, *Tetrahedron*, 2004, 60, 2757-2763.
- 4. J. Rochford and E. Galoppini, *Langmuir*, 2008, 24, 5366-5374.
- 5. J. R. Burns, K. Göpfrich, J. W. Wood, V. V. Thacker, E. Stulz, U. F. Keyser and S. Howorka, *Angewandte Chemie International Edition*, 2013, 52, 12069-12072.
- 6. X. Wu, W. Wu, X. Cui, J. Zhao and M. Wu, *Journal of Materials Chemistry C*, 2016, 4, 2843-2853.