Supporting information

Cu-enhanced Photoelectronic and Ethanol Sensing Properties of Cu₂O/Cu Nanocrystals Prepared by One-step Controllable Synthesis

Yao Hu;^a Muwei Ji;^{a,b,c} Yiqing He;^a Ziyi Liu;^a Qinghua Yang;^a Chaozheng Li;^d Jiajia Liu;^d Bo Li;^a Jiatao Zhang;^{d,*} Caizhen Zhu;^{b,*} and Jin Wang^{a,*}

- a. Graduated school at Shenzhen, Tsinghua University, Shenzhen, 518065, China
- b. College of Chemistry and Environment Engineering, Shenzhen University, Shenzhen, 518060, China
- c. Institute of Chemistry, Chinese Academy of Sciences, Beijing , 100190, China
- d. Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

Sample	Cu ₂ O: Cu (molar ratio)
Cu ₂ O (2 mmol A.A.)	œ
Cu ₂ O:Cu (4 mmol A.A.)	5:1
Cu ₂ O:Cu (8 mmol A.A.)	1:4
Cu (12 mmol A.A.)	0

Tab. S1 The molar ratio of Cu_2O and Cu in the four samples.

Fig. S1 The SEM images with high magnification for (a) Cu₂O (2 mmol A.A.), (b) Cu₂O/Cu (4 mmol A.A.), (c) Cu₂O/Cu (8 mmol A.A.) and (d) Cu (12 mmol A.A.).

Fig.S2 Elemental mapping of the Cu₂O/Cu structure.

Fig. S3 (a) The LRTEM images of the prepared Cu_2O/Cu particles; (b) and (c) are the concentration of the element copper along the line 1 and 2, respectively; (d) The comparison of Cu and O element intensity along line 1.

Fig. S4 XPS spectra of the as-prepared samples: (a) overall survey spectra; indicating there are elemental C, O and Cu. Carbon element is attributed to the absorption in the air and the hydrocarbon of the XPS instrument itself. Besides existing in Cu₂O, part of the oxygen element is ascribed to air adsorption like carbon; (b) the Cu XPS peaks of as-prepared Cu₂O/Cu.

Fig. S5 The UV-vis absorption spectrum (a) and photograph (b) of as-prepared Cu₂O (2 mmol A.A.), Cu₂O/Cu (4 mmol A.A.)

Vis irradiation Vis irradiation 0.1 mA cm⁻² Cu (12mmol A.A.) O/Cu (4mmol A.A 2uA•cm⁻² Cu₂O/Cu (8mmol A.A.) A.A. Photocurrent density ILLI vv UV - vis irradiation UV - vis irradiation Cu₂O (2mmol A.A.) Cu₂O/Cu (4mmol A.A.) Cu₂O/Cu (8mmol A.A.) 0.1 mA cm⁻² 2uA•cm⁻² Cu (12mmol A.A.) Cu_O/Cu (8mmol A.A. OLA.A.) 50 100 150 200 250 ò 50 100 150 200 250 300 0 Time (s) Time (s)

and Cu (12 mmol A.A.) nanocrystals.

Fig.S6 The photocurrent of Cu-rich Cu₂O/Cu prepared with 8 mmol A.A. and pure Cu prepared with 12 mmol A.A. under UV-

vis light and Vis light.

Fig.S7 XRD pattern of Cu_2O/Cu (4 mmol A.A.) before and after UV-vis irradiation.

Fig.S8 The sectional SEM image views of (a) Cu₂O (2 mmol A.A.), (b) Cu₂O/Cu (4 mmol A.A.) and (c) Cu₂O/Cu (8 mmol A.A.) after ethanol sensing test; the surface SEM images of (d) Cu₂O (2 mmol A.A.), (e) Cu₂O/Cu (4 mmol A.A.) and (f) Cu₂O/Cu (8 mmol A.A.) after ethanol sensing test.

Fig.S9 (a) The relationship of sensitivity and temperature with the ethanol concentration of 200ppm; the resistance for different ethanol gas concentration at 240°C with (b) Cu₂O (2 mmol A.A.), (c) Cu₂O/Cu (4 mmol A.A.) and (d) Cu₂O/Cu (8 mmol A.A.).

Fig.S10 (a) The XRD pattern of Cu₂O/Cu (4 mmol A.A.) after ethanol sensing test; (b) XRD pattern of Cu₂O/Cu (4 mmol A.A.) after ethanol sensing test.

Fig.S11 (a) The photograph of the sensor and the SEM images of pure Cu_2O or Cu_2O/Cu layer; (b) the schematic diagram of the sensor and the sectional view.