Electronic Supplementary Information

In-situ preparation of uniform SnO₂ nanocrystals anchored

within mesoporous carbon network as advanced anode materials

Jinlong Hu^a, Xiaowei Li^b, Le Li^b, Meiwei Qi^b, Xiaoxia Chen^b, Quan Zuo^b and Weijian Xu^{a*}

^a School of Chemistry and Chemical Engineering, Hunan University, Hunan 410082,

P.R. China

^b School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

*Corresponding author e-mail address:

E-mail: weijxu@hnu.edu.cn (W. J. Xu); Fax: +86-731-88821549.

Fig. S1. a) Photograph of seaweeds. b) Chemical Structure of sodium alginate.

Fig. S2. SEM images of the SnO₂@SAMC composite with different magnifications: a) 2 um. b) 400 nm, c) 200 nm, d) 100 nm.

Fig. S3. Higher magnification TEM images of $SnO_2@SAMC$ composite before calcination.

Fig. S4. a) Thermogravimetric analysis of sodium alginate and glucose under nitrogen atmosphere. Heating rate: 10° C min⁻¹. b) N₂ adsorption and desorption isotherms of SnO₂@GC composite, the inset shows the pore-size distribution.

Fig. S5. Raman spectra for SnO₂@SAMC and SnO₂@GC composites.

Materials	Methods	Reactants	Morphology	Particle Sizes	References
Sn/SnO ₂ particles within mesoporous carbon	hard-template and liquid impregnation	mesoporous SBA-15; Pluronic P123; sucrose; HF; H ₂ SO ₄ ; SnCl ₂ ·2H ₂ O; etc.	702) 0.226m (101)	not reported	1
SnO ₂ particles within micro/mesoporous carbon	soft-template and liquid impregnation	phloroglucinol; Pluronic F127; organic solvent; HCl; H ₂ O ₂ ; SnCl ₄ .5H ₂ O; etc.		0.8-4 nm	2
SnO ₂ particles within N-doped graphene sheets	freeze-drying and vapor reduction	SnCl ₄ · 5H ₂ O; graphite oxide and hydrazine monohydrate.	SnO ₂ (110) N-RGO	4-5 nm	3
Polydopamine-coated SnO ₂ particles	ATRP, hydrolysis, hydrothermal reaction and polydopamine coating;	Hydroxypropyl cellulose, Na ₂ SnO ₃ ·3H ₂ O, dopamine hydrochloride, etc.	PDA coating ↑ 0 0 10 nm	average size of approximately 5 nm	4
SnO ₂ @SAMC	ion exchange, hydrothermal and calcination	sodium alginate and SnCl ₂ ·2H ₂ O	Carton metwork	2.2-3.8 nm	this work

Table S1. Comparison of synthesizing methods for confinement of 0D crystalline SnO_2 particles within carbonaceous materials

Fig. S6. TEM images of $SnO_2@GC$ composite: a, b) Freshly prepared electrode before cycling with different magnification, and c, d) different magnification after cycling at 200 mA g⁻¹ for 200 cycles.

Fig. S7. a and b) TEM images of SnO_2 sheets, inset of b) shows the SAED. c) XRD pattern for SnO_2 sheets, d) Cycle performance at specific current of 200 mA g⁻¹.

Fig. S8. SEM images of $SnO_2@SAMC$ composite: a, b) Freshly prepared electrode before cycling with different magnification, and c, d) different magnification after cycling at 200 mA g⁻¹ for 300 cycles. TEM images of $SnO_2@SAMC$ composite: e) Freshly prepared electrode before cycling, and f) after cycling at 200 mA g⁻¹ for 300 cycles.

References

1. H. M. Hassan , Z. W. Chen , A. P. Yu , Z. Chen and X. C. Xiao, *Electrochim. Acta*, 2013, **87**, 844-852.

2. A. Jahel , C. M. Ghimbeu, L. Monconduit and C. V. Guterl, Adv. Energy Mater., 2014, 4, 1400025.

3. X. Zhou, L. J. Wan and Y. G. Guo, Adv. Mater., 2013, 25, 2152-2157.

4. B. B. Jiang, Y. J. He, B. Li, S. Q. Zhao, S. Wang, Y. B. He and Z. Q. Lin, *Angew. Chem. Int. Ed.*, 2017, **56**, 1869-1872.