Supporting Information for

Influence of the external magnetic field and magnetic-site dilution on the magnetization dynamics of a coordination network based on ferromagnetic coupled dinuclear dysprosium(III) units

Xuejing Zhang, Na Xu,* Wei Shi, Bing-Wu Wang, and Peng Cheng*

Table of Contents

1. Structure and Crystallographic Studies	2
2. Powder X-ray Diffraction (PXRD) and Thermal analyses(TG)	5
3. Other Magnetic Data	6
4. Tables of Magnetic Data	15

1.	Structure and	Crystallogra	phic Studies

Dy			
Formula	$C_{20}H_{22}Dy_2N_{12}O_{12}$		
Fw	947.50		
Temp, K	120(2)		
Crystal syst	Monoclinic		
Space group	$P2_{1}/c$		
<i>a</i> , Å	9.72904(17)		
b, Å	11.3592(2)		
<i>c</i> , Å	24.6724(4)		
α, deg	90		
ß, deg	93.8572(17)		
γ , deg	90		
<i>V</i> , Å ³	2720.47(8)		
Ζ	4		
<i>D</i> c, g/cm ³	2.3131		
$\mu (\mathrm{mm}^{-1})$	5.539		
Data/ parameter	4785 / 419		
obs reflns	10756		
θ range, (°)	5.84 - 50		
$R_{\rm int}/{\rm GOF}$ on F^2	0.0279 / 1.059		
$R_1, wR_2[I > 2\sigma(I)]$	0.0258, 0.0557		
R_1 , wR_2 (all data)	0.0317, 0.0590		
max/min, e Å ⁻³	0.60/-0.73		

Table S1 Selected crystallographic parameters, bond lengths and angles of Dy

Dy				
Bonds/Angles	(Å / °)	Bonds/Angles	(Å / °)	
Dy(1)-O(3)	2.232(3)	N(16)-Dy(1)-N(36)	148.58(11)	
Dy(1)-O(14)	2.294(3)	O(42)-Dy(1)-Dy(2)	172.12(8)	
Dy(1)-O(22)	2.384(3)	O(42)-Dy(1)-O(22)	70.82(10)	
Dy(1)-O(42)	2.367(3)	O(42)-Dy(1)-N(16)	100.55(11)	
Dy(1)-O(46)	2.387(3)	O(42)-Dy(1)-O(46)	76.22(11)	
Dy(1)-O(32)	2.378(3)	O(42)-Dy(1)-O(32)	85.69(11)	
Dy(1)-N(16)	2.578(4)	O(42)-Dy(1)-N(36)	62.45(11)	
Dy(1)-N(36)	2.639(4)	O(46)-Dy(1)-Dy(2)	104.92(8)	
Dy(2)-O(3)	2.308(3)	O(46)-Dy(1)-N(16)	71.26(11)	
Dy(2)-O(11)	2.373(3)	O(46)-Dy(1)-N(36)	78.84(11)	
Dy(2)-O(14)	2.221(3)	O(32)-Dy(1)-Dy(2)	90.03(8)	
Dy(2)-O(33)	2.369(3)	O(32)-Dy(1)-N(16)	135.87(11)	
Dy(2)-O(43)	2.397(3)	O(32)-Dy(1)-O(46)	150.54(10)	
Dy(2)-O(45)	2.400(3)	O(32)-Dy(1)-N(36)	72.26(11)	
Dy(2)-N(26)	2.611(4)	N(36)-Dy(1)-Dy(2)	109.92(8)	
Dy(2)-N(5)	2.619(4)	O(3)-Dy(2)-Dy(1)	34.78(7)	
O(3)-Dy(1)-Dy(2)	36.15(7)	O(3)-Dy(2)-O(11)	80.53(10)	
O(3)-Dy(1)-O(14)	70.52(10)	O(3)-Dy(2)-O(33)	151.43(10)	
O(3)-Dy(1)-O(22)	150.74(10)	O(3)-Dy(2)-N(5)	72.67(11)	
O(3)-Dy(1)-N(16)	103.08(11)	O(3)-Dy(2)-O(45)	123.47(11)	
O(3)-Dy(1)-O(42)	138.42(10)	O(3)-Dy(2)-N(26)	134.98(11)	
O(3)-Dy(1)-O(46)	79.66(11)	O(33)-Dy(2)-Dy(1)	170.88(7)	
O(3)-Dy(1)-O(32)	100.04(11)	O(33)-Dy(2)-O(11)	71.76(10)	
O(3)-Dy(1)-N(36)	80.02(11)	O(33)-Dy(2)-O(43)	84.37(11)	
O(14)-Dy(1)-Dy(2)	34.37(7)	O(33)-Dy(2)-N(5)	100.30(11)	
O(14)-Dy(1)-O(22)	80.37(10)	O(33)-Dy(2)-O(45)	77.45(11)	
O(14)-Dy(1)-N(16)	72.39(11)	O(33)-Dy(2)-N(26)	62.70(10)	
O(14)-Dy(1)-O(42)	150.22(10)	O(43)-Dy(2)-Dy(1)	91.40(7)	
O(14)-Dy(1)-O(46)	125.34(11)	O(43)-Dy(2)-N(5)	137.28(10)	
O(14)-Dy(1)-O(32)	80.82(10)	O(43)-Dy(2)-O(45)	149.14(10)	
O(14)-Dy(1)-N(36)	135.57(11)	O(43)-Dy(2)-N(26)	70.80(10)	
O(22)-Dy(1)-N(16)	64.07(11)	N(5)-Dy(2)-Dy(1)	88.29(8)	
O(22)-Dy(1)-O(46)	116.72(11)	O(45)-Dy(2)-Dy(1)	102.75(8)	
O(22)-Dy(1)-N(36)	125.24(10)	O(45)-Dy(2)-N(5)	71.29(11)	
N(16)-Dy(1)-Dy(2)	87.13(8)	O(45)-Dy(2)-N(26)	78.70(11)	

Structural formal	Structure	DC	U cr(K)	Hysteresis	Magnetic	Ref
Structurar formar	dimensionality	field(Oe)		loop/Coercive	interaction	
	unifolisionunty	11010(00)		field(Oe)		
[Dy(3-py-4 pmc)(C ₂ O ₄) _{0.5} (OH)(H ₂ O)]	2	0	186		ferromagnetic	33
				720 (2 K)		
[Ln(phen)-(L)] _n	3	0	131		ferromagnetic	32
Dy ₂ (INO) ₄ (NO ₃) ₂ ·2CH ₃ CN	3	0	110		ferromagnetic	34
[Dy ₂ (hmi) ₂ (NO ₃) ₂ (MeOH) ₂]. MeCN	2	700	71		ferromagnetic	29
$[Dy_2(apca)_4(\mu_2\text{-}OH)_2(H_2O)_2]_n$	2	0	59	м/ <i>М</i> , <i>щ</i>	ferromagnetic	This
				-10 -5 H/kOe 5 10		WOIK
				740 (2 K)		
${[Dy_2(FDA)_3(DMF)_2] \cdot 1.5DMF}_n$	3	2000	41.8/67.5		ferromagnetic	37
$[Dy_2(FDA)_3(DMF)_2(CH_3OH)]_n$						
$Dy(C_2O_4)_{1.5}(phen)] \cdot 0.5H_2O$	3	1200	35.5/32.6		ferromagnetic	36

Table S2 Selected examples of high-dimensional Dy-MOFs behaving as SMMs.

3-py-4-pmc: 2-(3-pyridyl)pyrimidine-4-carboxylate; L: 5-hydroxyisophthalic acid; phen: 1, 10phenanthroline; HINO = isonicotinic acid N-oxide; Hapca : 3-aminopyrazine-2-carboxylic acid; hmi: (isonicotino)hydrazine; H₂FDA = furan-2,5-dicarboxylic acid

Figure S1 The supramolecular network of Dy connected by hydrogen bonds.

2. Powder X-ray Diffraction (PXRD) and Thermal analyses(TG)

Figure S2 Simulated and measured PXRD of Dy and Dy@Y.

Figure S3 TGA of Dy and Dy@Y.

Figure S4 SEM image of Dy@Y.

3. Other Magnetic Data

Figure S5 variable-field magnetizations of Dy (left) and Dy@Y (right).

Figure S6 Temperature dependence of the ac susceptibilities of Dy under zero dc field.

Figure S7 Frequency dependence of the in-phase (χ') ac susceptibility of **Dy** under zero dc field.

Figure S8 Plots of $\ln \tau$ versus $\ln T$ for Dy under zero dc field. The solid lines are linear fitting results.

Figure S9 Cole-Cole diagram for Dy under zero dc field fitted by the general Debye model.

Figure S10 a) Frequency dependence of the out-of-phase (χ'') ac susceptibility for **Dy** measured at 4 K with different dc fields. b) Field dependence of the relaxation time from χ'' vs. υ data.

Figure S11 Temperature dependence of the in-phase (χ') and out-of phase (χ'') ac susceptibilities of **Dy** under 2000 Oe dc field.

Figure S12 Frequency dependence of the in-phase (χ') ac susceptibility components of **Dy** under 2000 Oe dc field.

Figure S13 Plot of $\ln \tau$ *versus* $\ln T$ for **Dy** under 2000 Oe dc field. The solid line is linear fitting result.

Figure S14 Cole-Cole diagram for **Dy** under 2000 Oe dc field extracted by plotting χ'' vs χ' and fitted by the general Debye model.

Figure S15 Temperature dependence of the in-phase (χ') and out-of phase (χ'') ac susceptibilities of **Dy@Y** under zero dc field.

Figure S16 Frequency dependence of the in-phase (χ') ac susceptibility of **Dy**@**Y** under zero dc field.

Figure S17 Plot of $\ln \tau$ *versus* $\ln T$ for **Dy**@**Y** under zero dc field. The solid line is linear fitting result.

Figure S18 Cole-Cole diagram for Dy@Y under zero dc field fitted by the general Debye model.

Figure S19 Frequency dependence of the out-of-phase (χ'') ac susceptibility components for **Dy@Y** measured at 2 K with different dc fields.

Figure S20 Temperature dependence of the in-phase (χ') and out-of phase (χ'') ac susceptibilities of **Dy@Y** under 1000 Oe dc field.

Figure S21 Frequency dependence of the in-phase (χ') ac susceptibility components of **Dy@Y** under 1000 Oe dc field.

Figure S22 Plot of $\ln \tau$ versus $\ln T$ for **Dy@Y** under 1000 Oe dc field. The solid line is linear fitting result.

Figure S23 Cole-Cole diagram for **Dy**@**Y** under 1000 Oe dc field extracted by plotting χ'' vs χ' and fitted by the general Debye model.

Figure S24 The relaxation time τ versus *T* for **Dy** and **Dy**@**Y** at low temperatures under zero dc field.

Figure S25 The ZFCM/FCM plots at 50 Oe of Dy.

Figure S26 The ZFCM/FCM plots at 50 Oe of Dy@Y.

4. Tables of Magnetic Data

Dy				
<i>T /</i> K	χο	χ1	α	
2.0	0.662	26.909	0.281	
2.5	0.716	18.304	0.243	
3.0	0.585	13.798	0.231	
3.5	0.629	11.006	0.210	
4.0	0.586	9.145	0.198	
4.5	0.525	7.822	0.194	
5.0	0.492	6.821	0.184	
5.5	0.511	6.033	0.164	
6.0	0.473	5.400	0.143	
6.5	0.481	4.887	0.112	
7.0	0.436	4.458	0.092	
7.5	0.434	4.100	0.067	
8.0	0.300	3.808	0.079	
8.5	0.371	3.553	0.059	
9.0	0.309	3.322	0.050	
9.5	0.292	3.123	0.044	
10.0	0.299	2.949	0.040	
10.5	0.361	2.788	0.022	
11.0	0.295	2.649	0.027	
11.5	0.309	3.322	0.050	
12.0	0	2.411	0.037	

Table S3. The parameters of the Cole-Cole plots fitted by the general Debye models of **Dy** under zero dc field.

Dy				
T/K	χο	χ1	α	
5	2.904	24.668	0.299	
5.5	2.862	22.091	0.259	
6.0	2.836	19.936	0.210	
6.5	2.800	18.120	0.148	
7.0	2.698	16.645	0.106	
7.5	2.566	15.442	0.082	
8.0	2.478	14.258	0.045	
8.5	2.300	13.431	0.038	
9.0	2.293	12.574	0.009	
9.5	2.143	11.887	0.003	
10.0	1.866	11.294	0.013	
10.5	1.514	10.758	0.025	
11.0	0	10.297	0.089	
11.5	0	9.810	0.083	
12.0	0.091	9.354	0.028	

Table S4. The parameters of the Cole-Cole plots fitted by the general Debye models of **Dy** under 2000 Oe dc field.

Dy@Y				
T/K	χο	X 1	α	
2.0	0	0.420	0.581	
2.5	0	0.335	0.586	
3.0	0	0.278	0.586	
3.5	0	0.239	0.579	
4.0	0	0.212	0.580	
4.5	0	0.193	0.583	
5.0	0	0.179	0.584	
5.5	0	0.167	0.564	
6.0	0.002	0.158	0.547	
6.5	0.005	0.138	0.515	
7.0	0.019	0.121	0.345	
7.5	0.021	0.111	0.259	
8.0	0.021	0.104	0.196	
8.5	0.021	0.097	0.149	
9.0	0.020	0.092	0.115	
9.5	0.019	0.087	0.099	
10.0	0.021	0.083	0.076	
10.5	0.021	0.079	0.063	
11.0	0.028	0.075	0.013	
11.5	0.021	0.072	0.063	
12.0	0	0.069	0.115	

Table S5. The parameters of the Cole-Cole plots fitted by the general Debye models of **Dy@Y** under zero dc field.

Dy@Y				
<i>T /</i> K	χο	χ1	α	
4.3	0.002	1.657	0.213	
4.6	0.002	0.249	0.150	
4.9	0.002	0.168	0.110	
5.2	0.002	0.141	0.085	
5.5	0.002	0.129	0.069	
5.8	0.002	0.122	0.069	
6.1	0.002	0.115	0.059	
6.4	0.002	0.109	0.066	
6.7	0.0019	0.1049	0.0654	
7	0.00187	0.10052	0.0723	
7.3	0.00191	0.09604	0.0642	
7.6	0.00135	0.09246	0.0721	
7.9	0.00189	0.08881	0.0652	
8.2	0.00136	0.08558	0.0731	
8.5	0.00158	0.08251	0.0731	
8.8	4.63E-4	0.0798	0.0831	
9.1	9.28E-4	0.0773	0.0842	
9.4	0.0023	0.0747	0.0804	
9.7	0.00485	0.0722	0.0444	
10.0	0.00459	0.0700	0.0429	
10.4	0.0077	0.0674	0.0385	
10.8	0.00675	0.06518	0.06209	
11.2	0.01031	0.06281	0.03329	
11.6	0	0.06108	0.15572	
12.0	0.00211	0.05879	0.07434	

Table S6. The parameters of the Cole-Cole plots fitted by the general Debye models of **Dy@Y** under 1000 Oe dc field.