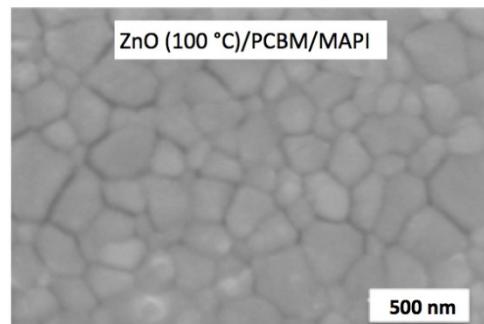


Supporting Information for

Environmentally friendly, aqueous processed ZnO as an efficient electron transport layer for low temperature processed metal-halide perovskite photovoltaics

Jiaqi Zhang,^a Maurizio Morbidoni,^a Keke Huang,^b Shouhua Feng,^b and Martyn A. McLachlan^{a,*}


^a *Department of Materials and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, United Kingdom.*

Email: martyn.mclachlan@imperial.ac.uk

^b *Department of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P.R. China.*

Supporting Table 1 Contact angle measurements of $\text{CH}_3\text{NH}_3\text{PbI}_3$ precursor droplets onto ZnO processed at the temperatures indicated

	as cast	ZnO (100 °C)	ZnO (200 °C)	ZnO (450 °C)
Contact angle (°)	34.5 ± 6.1	28.4 ± 1.8	27.1 ± 2.8	7.5 ± 0.1

	ZnO/PCBM/MAPI
Average Grain Size (nm)	222.2
Standard Deviation (nm)	64.5

Supporting Figure 1 SEM images of $\text{CH}_3\text{NH}_3\text{PbI}_3$ films on top of ZnO (100 °C)/PCBM films, showing similar perovskite grain size compared to that on top of ZnO (100 °C).