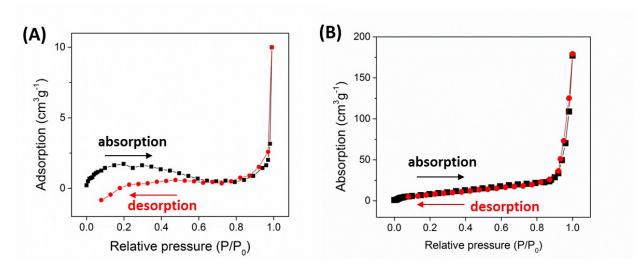
Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2017

3D graphene foam/ZnO nanorods array mixed-dimensional heterostructure for photoelectrochemical biosensing


Zhuo Kang^a, Yong Li^a, Shiyao Cao^a, Zihan Zhang^a, Huijing Guo^a, Pingwei Wu^a, Lixin Zhou^a, Suicai Zhang^a, Jing Wu^a, Xiaomei Zhang^b, Yue Zhang^{a,c,*}

^aState Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

^bDepartment of Mechanical Engineering, Tokyo Institute of Technology, Tokyo, Japan

^cKey Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China

*Corresponding author: The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, China. E-mail: yuezhang@ustb.edu.cn (Y. Zhang)

Figure S1. Brunauer-Emmett-Teller (BET) nitrogen adsorption/desorption characteristics of pristine 3DGF (A)and 3DGF/ZnO (B), respectively. The specific surface area of 3DGF is 5.7 m²g⁻¹, while it changed to 39.2 m²g⁻¹ after synthesis of ZnO NRs array. The results demonstrated the significant surface area increase for 3DGF/ZnO compared with pristine 3DGF.