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Faraday Tests

The detection of oxygen was performed in a one-compartment, three-electrode cell 

(the volume of the headspace was measured as 35 mL) with stirring. A 1×1 cm of 

nickel foam electrode with 1.0 mg cm-2 catalyst loading was used as the working 

electrode. The counter electrodeis a 1×1 cm Pt foil and the reference electrode is an 

Ag/AgCl (saturated KCl solution) electrode. Before oxygen detection, the cell was 

firmly sealed to be gas-tight and subsequently purged with argon for 30 min. Before 

and after the electrolysis at a current density of 10 mA cm-2 for 1 hour, the gas 

products were analyzed by gas chromatography (Agilent 7820A-GC, molecular sieve 

columns, thermal-conductivity detector, TCD). The theoretical amount of O2 

produced was calculated by the charge of electrolysis for 1 hour.

Table S1. ICP-AES results of CNFg and r-CNFg.

Samples Co (mmol) Ni (mmol) Fe (mmol) Molar ratio of Co : Ni : Fe

0.301 0.329 1.451

0.320 0.344 1.525CNFg

0.321 0.347 1.535

1.000 : 1.083 : 4.788

0.279 0.318 1.400

0.280 0.301 1.352r-

CNFg
0.280 0.302 1.350

1.000 : 1.096 : 4.882
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Figure S1. TGA curve for CNFg under an air atmosphere.

Figure S2. Size distribution of CNFg.
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Figure S3. SEM images of a) NFg, b) r-NFg, c) CNFg, d) r-CNFg, e) CFg and f) 

r-CFg.

Figure S4. a) HAADF-STEM image of CNFg, b-f) elemental mappings of r-

CNFg, revealing the elemental distribution of C, O, Co, Ni and Fe.
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Figure S5. a) TEM and b) HRTEM images of NFg; c) SAED pattern and d) 

HAADF-STEM image of NFg; e-h) elemental mappings of NFg, revealing 

the elemental distribution of C, O, Ni and Fe.

Figure S6. a) TEM and b) HRTEM images of r-NFg; c) SAED pattern and d) 

HAADF-STEM image of r-NFg; e-h) elemental mappings of r-NFg, revealing 

the elemental distribution of C, O, Ni and Fe.
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Figure S7. a) TEM and b) HRTEM images of CFg; c) SAED pattern and d) 

HAADF-STEM image of CFg; e-h) Elemental mappings of CFg, revealing 

the elemental distribution of C, O, Co and Fe.

Figure S8. a) TEM and b) HRTEM images of r-CFg; c) SAED pattern and d) 

HAADF-STEM image of r-CFg; e-h) Elemental mappings of r-CFg, 

revealing the elemental distribution of C, O, Co and Fe.

6



Figure S9. PXRD patterns of CoxNi1-xFe2O4@GO with different Co : Ni 

stoichiometric ratios (x = 0.1, 0.3, 0.5, 0.7, 0.9) and their reduced counterparts.

Figure S10. FT-IR spectra of GO, spinel ferrite composites and their reduced 

composites.
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Figure S11. LSVs of r-CNFg, GO, r-GO, CNF, r-CNF and CNFg on NF 

(catalyst loading of ∼ 1.5 mg cm-2) measured in 1.0 M KOH solution with the 

scan rate of 1.0 mV s-1.

Figure S12. LSVs of r-CoxNi1-xFe2O4@GO (x = 0.1, 0.3, 0.5, 0.7, 0.9) on the 

nickel foam (catalyst loading of ∼ 1.5 mg cm-2) measured in 1.0 M KOH 

solution with the scan rate of 1.0 mV s-1.
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Figure S13. Chronopotentiometric curves obtained with different loading 
amount of r-CNFg (0.25 ~ 2.00 mg cm-2) on Ni foam with constant current 
densities of 10 mA cm-2.
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Figure S14. a) Chronopotentiometric curves of spinel composites (CNFg, CFg and 

NFg), their reduced forms (r-CNFg, r-CFg and r-NFg), and IrO2 with constant 

current density of 10 mA cm-2; b) Chronopotentiometric curve obtained with r-CNFg 

on nickel foam with constant current density of 20 mA cm-2.
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Figure S15. XPS spectra of r-CNFg before and after electrolysis.

Figure S16. O2 production measured by GC (black line) and the theoretical amount 

of O2 produced (red line) for r-CNFg, assuming a Faradic efficiency of ca. 100%.
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Figure S17. GC results of the gas products after electrolysis of with r-CNFg 

catalysts. There are no peaks at 6 min and 44 min, which appeared as the existence 

of CO and CO2, respectively.
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Table S2. A comparison of the OER overpotentials for the reported spinel oxide 

catalysts in basic solution.

Catalysts Electrolyte
η (mV) @

10 mA cm-2

Tafel slope

 (mV dec-1)
References

CNFg 1.0 M KOH 290 58 This work

r-CNFg 1.0 M KOH 210 35 This work

CFg 1.0 M KOH 290 57 This work

r-CFg 1.0 M KOH 220 31 This work

NFg 1.0 M KOH 300 62 This work

r-NFg 1.0 M KOH 220 37 This work

NiFe2O4 1.0 M KOH 381 46.4 Ref 1

amorphous CoFe2O4 0.1 M KOH 490 48 Ref 2

crystalline CoFe2O4 0.1 M KOH 560 61 Ref 2

CoFe2O4 NPs-on-CFP 1.0 M KOH 378 73 Ref 3

NiO-NiFe2O4/rGO 1.0 M KOH 296 42.8 Ref 4

CoFe2O4/PANI-MWCNTs 1.0 M KOH 314 30.69 Ref 5

CoFe2O4/C NRAs 1.0 M KOH 240 45 Ref 6

rGO/NiMnCo spinel oxides 0.1 M KOH 320 58 Ref 7

NiCo2O4 nanosheet 1.0 M KOH 320 30 Ref 8

NiCo2O4 Hollow Microcuboids 1.0 M KOH 290 53 Ref 9

CoMn2O4 0.1 M KOH ~600 64 Ref 10

MnCo2O4 0.1 M KOH ~510 55 Ref 10
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Figure S18. CVs of (a, b) NFg and CFg; (c, d) r-NFg and r-CFg in 1.0 M KOH 

solution at varying scan rates, with the plots of the capacitive current density as a 

function of scan rates (e, f).

Figure S19. N2 absorption isotherms of GO, CNFg and r-CNFg at 77 K.
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Figure S20. Water vapor absorption isotherms of CNF and r-CNF at 298 K.

Figure S21. TGA curves for CNF and r-CNF under an air atmosphere.
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Figure S22. XPS spectra of O 1s of CNF and r-CNF.
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