Supporting Information for

Highly efficient oxygen evolution electrocatalysts prepared by reduction-engraved ferrites on reduced graphene oxides

Jing-Bo Tan,^a Pathik Sahoo,^a Jia-Wei Wang, ^a Yu-Wen Hu,^a Zhi-Ming Zhang,^{*b} Tong-Bu Lu^{*a,b}

^aMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

^bInstitute for new Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin 300384, China.

Faraday Tests

The detection of oxygen was performed in a one-compartment, three-electrode cell (the volume of the headspace was measured as 35 mL) with stirring. A 1×1 cm of nickel foam electrode with 1.0 mg cm⁻² catalyst loading was used as the working electrode. The counter electrode a 1×1 cm Pt foil and the reference electrode is an Ag/AgCl (saturated KCl solution) electrode. Before oxygen detection, the cell was firmly sealed to be gas-tight and subsequently purged with argon for 30 min. Before and after the electrolysis at a current density of 10 mA cm⁻² for 1 hour, the gas products were analyzed by gas chromatography (Agilent 7820A-GC, molecular sieve columns, thermal-conductivity detector, TCD). The theoretical amount of O₂ produced was calculated by the charge of electrolysis for 1 hour.

Samples	Co (mmol)	Ni (mmol)	Fe (mmol)	Molar ratio of Co : Ni : Fe
	0.301	0.329	1.451	
CNFg	0.320	0.344	1.525	1.000 : 1.083 : 4.788
	0.321	0.347	1.535	
	0.279	0.318	1.400	
r-	0.280	0.301	1.352	1.000 : 1.096 : 4.882
CNFg	0.280	0.302	1.350	

Table S1. ICP-AES results of CNFg and r-CNFg.

Figure S1. TGA curve for CNFg under an air atmosphere.

Figure S2. Size distribution of CNFg.

Figure S3. SEM images of a) NFg, b) r-NFg, c) CNFg, d) r-CNFg, e) CFg and f) r-CFg.

Figure S4. a) HAADF-STEM image of **CNFg**, b-f) elemental mappings of r-**CNFg**, revealing the elemental distribution of C, O, Co, Ni and Fe.

Figure S5. a) TEM and b) HRTEM images of **NFg**; c) SAED pattern and d) HAADF-STEM image of **NFg**; e-h) elemental mappings of **NFg**, revealing the elemental distribution of C, O, Ni and Fe.

Figure S6. a) TEM and b) HRTEM images of r-**NFg**; c) SAED pattern and d) HAADF-STEM image of r-**NFg**; e-h) elemental mappings of r-**NFg**, revealing the elemental distribution of C, O, Ni and Fe.

Figure S7. a) TEM and b) HRTEM images of **CFg**; c) SAED pattern and d) HAADF-STEM image of **CFg**; e-h) Elemental mappings of **CFg**, revealing the elemental distribution of C, O, Co and Fe.

Figure S8. a) TEM and b) HRTEM images of r-**CFg**; c) SAED pattern and d) HAADF-STEM image of r-**CFg**; e-h) Elemental mappings of r-**CFg**, revealing the elemental distribution of C, O, Co and Fe.

Figure S9. PXRD patterns of $Co_x Ni_{1-x} Fe_2 O_4 @GO$ with different Co : Ni stoichiometric ratios (x = 0.1, 0.3, 0.5, 0.7, 0.9) and their reduced counterparts.

Figure S10. FT-IR spectra of GO, spinel ferrite composites and their reduced composites.

Figure S11. LSVs of r-CNFg, GO, r-GO, CNF, r-CNF and CNFg on NF (catalyst loading of ~ 1.5 mg cm^{-2}) measured in 1.0 M KOH solution with the scan rate of 1.0 mV s⁻¹.

Figure S12. LSVs of r-Co_xNi_{1-x}Fe₂O₄@GO (x = 0.1, 0.3, 0.5, 0.7, 0.9) on the nickel foam (catalyst loading of ~ 1.5 mg cm⁻²) measured in 1.0 M KOH solution with the scan rate of 1.0 mV s⁻¹.

Figure S13. Chronopotentiometric curves obtained with different loading amount of r-CNFg ($0.25 \sim 2.00 \text{ mg cm}^{-2}$) on Ni foam with constant current densities of 10 mA cm⁻².

Figure S14. a) Chronopotentiometric curves of spinel composites (**CNFg**, **CFg** and **NFg**), their reduced forms (**r-CNFg**, **r-CFg** and **r-NFg**), and IrO₂ with constant current density of 10 mA cm⁻²; b) Chronopotentiometric curve obtained with **r-CNFg** on nickel foam with constant current density of 20 mA cm⁻².

Figure S15. XPS spectra of r-CNFg before and after electrolysis.

Figure S16. O_2 production measured by GC (black line) and the theoretical amount of O_2 produced (red line) for r-CNFg, assuming a Faradic efficiency of ca. 100%.

Figure S17. GC results of the gas products after electrolysis of with r-CNFg catalysts. There are no peaks at 6 min and 44 min, which appeared as the existence of CO and CO₂, respectively.

		η (mV) @	Tafel slope	References	
Catalysts	Electrolyte	10 mA cm ⁻²	(mV dec ⁻¹)		
CNFg	1.0 M KOH	290	58	This work	
r-CNFg	1.0 M KOH	210	35	This work	
CFg	1.0 M KOH	290	57	This work	
r-CFg	1.0 M KOH	220	31	This work	
NFg	1.0 M KOH	300	62	This work	
r-NFg	1.0 M KOH	220	37	This work	
NiFe ₂ O ₄	1.0 M KOH	381	46.4	Ref 1	
amorphous CoFe ₂ O ₄	0.1 M KOH	490	48	Ref 2	
crystalline CoFe ₂ O ₄	0.1 M KOH	560	61	Ref 2	
CoFe ₂ O ₄ NPs-on-CFP	1.0 M KOH	378	73	Ref 3	
NiO-NiFe ₂ O ₄ /rGO	1.0 M KOH	296	42.8	Ref 4	
CoFe ₂ O ₄ /PANI-MWCNTs	1.0 M KOH	314	30.69	Ref 5	
CoFe ₂ O ₄ /C NRAs	1.0 M KOH	240	45	Ref 6	
rGO/NiMnCo spinel oxides	0.1 M KOH	320	58	Ref 7	
NiCo ₂ O ₄ nanosheet	1.0 M KOH	320	30	Ref 8	
NiCo ₂ O ₄ Hollow Microcuboids	1.0 M KOH	290	53	Ref 9	
CoMn ₂ O ₄	0.1 M KOH	~600	64	Ref 10	
MnCo ₂ O ₄	0.1 M KOH	~510	55	Ref 10	

Table S2. A comparison of the OER overpotentials for the reported spinel oxide catalysts in basic solution.

Figure S18. CVs of (a, b) **NFg** and **CFg**; (c, d) r-**NFg** and r-**CFg** in 1.0 M KOH solution at varying scan rates, with the plots of the capacitive current density as a function of scan rates (e, f).

Figure S19. N₂ absorption isotherms of GO, CNFg and r-CNFg at 77 K.

Figure S20. Water vapor absorption isotherms of CNF and r-CNF at 298 K.

Figure S21. TGA curves for CNF and r-CNF under an air atmosphere.

Figure S22. XPS spectra of O 1s of CNF and r-CNF.

Reference

- 1 V. Maruthapandian, M. Mathankumar, V. Saraswathy, B. Subramanian and S. Muralidharan, ACS Appl Mater Interfaces, 2017, **9**, 13132-13141.
- A. Indra, P. W. Menezes, N. R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeisser, P. Strasser and M. Driess, J. Am. Chem. Soc., 2014, 136, 17530-17536.
- A. Kargar, S. Yavuz, T. K. Kim, C. H. Liu, C. Kuru, C. S. Rustomji, S. Jin and P. R. Bandaru, ACS Appl Mater Interfaces, 2015, **7**, 17851-17856.
- 4 G. Q. Zhang, Y. F. Li, Y. F. Zhou and F. L. Yang, *Chemelectrochem*, 2016, **3**, 1927-1936.
- 5 Y. Liu, J. Li, F. Li, W. Z. Li, H. D. Yang, X. Y. Zhang, Y. S. Liu and J. T. Ma, *J. Mater. Chem. A*, 2016, **4**, 4472-4478.
- 6 X. F. Lu, L. F. Gu, J. W. Wang, J. X. Wu, P. Q. Liao and G. R. Li, *Adv. Mater.*, 2017, **29**, 1604437.
- R. Miao, J. He, S. Sahoo, Z. Luo, W. Zhong, S.-Y. Chen, C. Guild, T. Jafari, B. Dutta, S. A.
 Cetegen, M. Wang, S. P. Alpay and S. L. Suib, *ACS Catal.*, 2017, 7, 819-832.
- 8 J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan and Y. Xie, Angew. Chem. Int. Ed., 2015, 54, 7399-7404.
- X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang and Z. Lin, *Angew. Chem. Int. Ed.*, 2016, 55, 6290-6294.
- 10 P. W. Menezes, A. Indra, N. R. Sahraie, A. Bergmann, P. Strasser and M. Driess, *ChemSusChem*, 2015, **8**, 164-171.