Nanocomposite of MoO₂ and MoC loaded on porous carbon as an efficient electrocatalyst for hydrogen evolution reaction

Cuncai Lv^{a,b}, Zhipeng Huang^{a,}, Qianpeng Yang^{a,b}, and Chi Zhang^{a,*}*

^aSchool of Chemical Science and Engineering, and Institute for Advanced Study,

Tongji University, Shanghai, 200092, PR China.

^bSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013,

PR China.

* Corresponding author: E-mail: zphuang@tongji.edu.cn, chizhang@tongji.edu.cn, chizhang@tongit.edu.cn, chizhang@tongit.edu.cn, chizhang@tongit.edu.cn, chizhang@tongit.edu.cn, chizhang@tongit.edu.cn, chizhang@tongit.edu.cn, a</a

Electronic Supplementary Information

Section 1. DFT calculations

The DFT calculations were carried out using CASTEP (Cambridge Serial Total Energy Package)¹ with a plane-wave basis set and ultrasoft pseudo-potentials.² The exchange correlation contribution to the total electronic energy was treated in a generalized gradient corrected (GGA) approximation (Perdew-Burke-Ernzerhoff functional).³ A plane-wave energy cutoff of 300 eV was used for the rapid comparison of different adsorption configurations while 380 eV was used for the adsorption energy calculations. The Monkhorst-Pack ($3 \times 5 \times 1$) k-point mesh was utilized for the first Brillouin zone integrations. The structural parameters were determined using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization technique. The thresholds for the converged structures were as follows: energy change less than 1×10^{-5} eV atom⁻¹, the maximum residual force less than 0.02 eV Å⁻¹, the maximum displacement of atoms less than 0.001 Å, and the maximum stress less than 0.05 GPa.

The surface energy (SE) was defined as the change in energy from bulk to the surface normalized by the area of each surface. The SE can be calculated as:

$$SE = (E_{surface} - N * (E_{bulk}/n))/(2 * A)$$

where $E_{surface}$ is the energy of a surface cell, E_{bulk} is the energy of a bulk cell, N is the number of atoms in the surface cell, n is the number of atoms in the bulk cell, and A is the area of a surface.

The differential adsorption energy of H adsorption was chosen to describe the stability of hydrogen, the equation being given below:

$$\Delta E_H = E(nH^*) - E((n-1)H^*) - 1/2E(H_2)_{\text{where }} E(nH^*) \text{ is the total energy}$$

of the model with n hydrogen atoms adsorbed on the surface, $E((n-1)H^*)$ is the total energy of the model with (n-1) hydrogen atoms adsorbed on the surface, and $E(H_2)$ is the total energy of a hydrogen molecule in the gas phase. n is 1 in our calculations.

The Gibbs free energy for hydrogen adsorption was calculated as below:

$$\Delta G_{H^*} = \Delta E_H + \Delta E_{ZPE} - T\Delta S_H$$
where ΔE_{ZPE} is the difference in
zero-point energy between the adsorbed state and the gas phase and ΔS_H is the entropy
difference between the adsorbed state and the gas phase. The overall corrections are
taken as: ⁴

$$\Delta G_{H^*} = \Delta E_H + 0.24 \ eV$$

In the calculation of ${}^{\Delta G}{}_{H^*}$, a unit cell of MoO₂ (101) was composed of 8 atomic layers and a vacuum region with a thickness of 20 Å. A MoC (001) unit cell contained 8 atomic layers and 20 Å-thick vacuum slab. In the two unit cells, the bottom four atomic layers of were fixed, and the other atoms were allowed to relax.

Fig. S1. The setup of synthesis of $MoO_2/MoC@C$.

Fig. S2. TGA curve of MoO₂/MoC@C in O₂ with heating rate of 10 °C min⁻¹.

For TGA curve, the MoC and MoO₂ were gradually oxidated to MoO₃, with a weight loss of the combustion of carbon. Assuming that the sample is composed of stoichiometric MoC and carbon, and converts to only MoO₃ during the TGA measurement with remaining weight of ca. 107.4 wt%, the MoC content is estimated to be ca. 81.0 wt% in MoO₂/MoC@C according to the following equation:

$$M_{MoC} = 107.4 \text{ wt\%} * M_{MoC}/M_{MoO3} = 107.4 \text{ wt\%} * 108/144 \approx 81.0 \text{ wt\%}.$$

Assuming that the sample is composed of stoichiometric MoO_2 and carbon, and converts to only MoO_3 during the TGA measurement with remaining weight of ca. 107.4 wt%, the MoC content is estimated to be ca. 95.0 wt% in $MoO_2/MoC@C$ according to the following equation:

$$M_{MoO2} = 107.4 \text{ wt\% * } M_{MoO2} / M_{MoO3} = 107.4 \text{ wt\% * } 128 / 144 \approx 95.0 \text{ wt\%}.$$

Namely, the content of carbon in MoO₂/MoC@C is estimated as 5~19 wt%.

Catalysta	Atomic (%)					
Catalysts	Мо	С	О			
MoO ₂ /MoC@C-750	15.46	47.06	37.49			
MoO ₂ /MoC@C-850	11.57	67.83	20.60			
MoO ₂ /MoC@C-950	3.66	88.93	7.41			

Table S1. The amount of Mo, C and O in the composites detected by XPS analysis

Fig. S3. Atomic ratio of Mo to C in $MoO_2/MoC@C-750$, $MoO_2/MoC@C-850$ and $MoO_2/MoC@C-950$.

			Peaks		Area		Mo-C/Mo-O
Samples	Samples species		3d _{5/2}	3d _{3/2}	3d _{5/2}	3d _{3/2}	$(Mo_{carbide}/Mo_{oxide})$
	Mo-C	Mo^{3+}	229.1	232.2	500	335	
MoO ₂ /MoC		Mo ⁴⁺	229.9	233.0	6471	3463	0.02/0.09
@C-750	Mo-O	Mo ⁵⁺	231.5	234.6	20600	13802	0.02/0.98
		M0 ⁶⁺	233.1	236.2	5642	3780	
MoO ₂ /MoC @C-850 Mo-O	Mo-C	Mo ²⁺	228.5	231.6	2000	1340	
		Mo^{3+}	229.1	232.2	24529	16434	
		Mo ⁴⁺	229.8	232.9	20644	13832	0.3/0.7
	Mo-O	Mo^{5+}	232.1	235.2	33478	22430	_
		Mo ⁶⁺	233.0	236.1	5553	3720	
	Mo-C	Mo^{2+}	228.6	232.7	2030	1360	
MoO ₂ /MoC — @C-950		Mo ³⁺	229.0	232.1	5094	3413	
		Mo^{4+}	229.8	232.9	3750	2512	0.56/0.44
	Mo-O	Mo^{5+}	232.1	235.2	700	469	
		M0 ⁶⁺	233.0	236.1	1090	730	-

Table S2. Fitting parameters (peak position, peak area and species percentage) for both Mo $3d_{5/2}$ and Mo $3d_{3/2}$ spectra taken on MoO₂/MoC@C-750, MoO₂/MoC@C-850 and MoO₂/MoC@C-950.

Fig. S4. XPS spectra of Si 2p in $MoO_2/MoC@C-750$, $MoO_2/MoC@C-850$ and $MoO_2/MoC@C-950$.

Fig. S5. SEM image of MoO₂/MoC@C-850.

Fig. S6. (a, b) STEM images and EDX elemental mapping images of (c) Mo, (d) O, and (e) C elements.

Fig. S7. (a) TEM and (b) HRTEM images of MoO₂/MoC@C-750.

Fig. S8. (a) TEM and (b) HRTEM images of MoO₂/MoC@C-950.

Fig. S9. Polarization curves of $MoO_2/MoC@C-850$ samples with different ratios of SMA/SiO₂. For clarification, the as-prepared samples were named SMA/SiO₂-X, which indicates the mass ratio (X) of SMA to SiO₂ in the synthesis. In the full paper, the samples of SMA/SiO₂-1.0:1.0 is also named as $MoO_2/MoC@C-850$.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	J 1		1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Catalyst	Mass density (mg cm ⁻²)	/ η ₂₀ (mV)	Tafel slope (mV/dec)	J ₀ (mA cm ⁻²)	J 100 mass activity ^[e] (mA cm ⁻² g ⁻	Counter electrode	Electrolyte
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Commercial Mo ₂ C particles	5 1.4	225	56	1.3*10-3	0.14	Pt	0.5 M H ₂ SO ₄
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mo ₂ C/XC ⁶	2	200(ŋ ₈)	59.4	8.1*10-3	1.5		0.1 M HClO4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mo_2C nanowires Mo_2C nanowires	0.357	220	55.8 64.5		2.8	Platinum	0.5 M H ₂ SO ₄
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo ₂ C/C-lamellas ⁸	0.3	220	60.5		1.7	Platinum wire	0.5 M H ₂ SO ₄
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo _x C-G hybrids ⁹		475(ŋ ₄)	115			Pt mesh	0.5 M H ₂ SO ₄
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mo _{2-x} Fe _x C ¹⁰	0.28	240 (η ₅)			2.7	Graphite electrode	0.1 M HClO ₄
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MoWON/NGR ¹¹	0.212	270	84		37.7	Pt wire	0.5 M H ₂ SO ₄
NiMo-NGTs ¹³ 2 79 67 0.84 13 Platinum foil 0.5 M H ₂ SO ₄ NiMo ₂ C/NF ¹⁴ 47(n ₁₀) 36.8 0.51 Pt foil 6 M NaOH Co-Mo ₂ C ¹⁵ 0.14 160 39 0.51 17.9 Graphite 0.5 M H ₂ SO ₄ np-Mo ₂ C NWs ¹⁶ 0.21 150 53 14.3 Platinum foil 0.5 M H ₂ SO ₄ Mo ₂ C@NPC/NPRGO ¹⁷ 0.14 50 33.6 1.9 285.7 Pt wire 0.5 M H ₂ SO ₄ MoC-Mo ₂ C HNWs ¹⁸ 0.14 152 43 1.1*10 ⁻² 28.6 Graphite 0.5 M H ₂ SO ₄ MoC-Mo ₂ C HNWs ¹⁸ 0.14 152 43 1.1*10 ⁻² 28.6 Graphite 0.5 M H ₂ SO ₄ MoC-Mo ₂ C ¹⁹ 0.28 140 60 0.28 40.4 0.1 M KOH MoC ₄ nano-octahedrons ²⁰ 0.8 160 53 0.023 2.4 Graphite od 0.5 M H ₂ SO ₄ Mo ₂ C/C ²¹ 0.28	Co ₆ Mo ₆ C-G ¹²	0.64	183	52	2.42*10-2	6.25	A piece of graphite	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$
NiMo ₂ C/NF1447(η ₁₀)36.80.51Pt foil6 M NaOHCo-Mo ₂ C15160390.516raphic0.5 M H ₂ SOAmp-Mo ₂ C NWs ¹⁶ 1354416raphic0.5 M H ₂ SOAmp-Mo ₂ C NWs ¹⁶ 16033.61.9285.7Pt wir0.5 M H ₂ SOAMo ₂ C@NPC/NPRGO ¹⁷ 0.145033.61.9285.7Pt wir0.5 M H ₂ SOAMo ₂ C@NPC/NPRGO ¹⁷ 0.145033.61.9285.7Pt wir0.5 M H ₂ SOAMo ₂ C-Mo ₂ C HNWs ¹⁸ 0.14140421.1*10*285.7Pt wir0.5 M H ₂ SOAMo ₂ C-Mo ₂ C HNWs ¹⁸ 0.14140421.1*10*285.7Pt wir0.5 M H ₂ SOAMo ₂ C-Mo ₂ C HNWs ¹⁸ 0.14140421.1*10*285.7Pt wir0.5 M H ₂ SOAMo ₂ C-Mo ₂ C ¹⁹ 0.28140600.2840.40.1 M phosphate bufferMo ₂ C/C ²¹ 0.28140600.2840.40.5 M H ₂ SOAMo ₂ C/C ²¹ 0.28140500.282.667aphite moi1.0 KOHMo ₂ C/C ²¹ 1.28145522.9*10 ⁻² 2.50.5 M H ₂ SOAMo ₂ C/C ²² 1.28145522.9*10 ⁻² 0.4Carbon rod0.5 M H ₂ SOAMo ₂ C/C ²² 1.28145522.9*10 ⁻² 6.4Carbon rod0.5 M H ₂ SOAMo ₂ C/C	NiMo-NGTs ¹³	2	79	67	0.84	13	Platinum foil	0.5 M H ₂ SO ₄
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NiMo ₂ C/NF ¹⁴		$47(\eta_{10})$	36.8	0.51		Pt foil	6 M NaOH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca Ma Cl5	0.14	160	39	0.51	17.0	Graphite	0.5 M H ₂ SO ₄
$ \begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	C0-1M0 ₂ C ¹³	0.14	135	44		17.9	electrode	1M KOH
$ \begin{array}{c c c c c c c c c } \begin{tabular}{ c c c c c c c } \hline Mo_{C}C(NPC(NPGO^{17} & 0.14 & 50 & 33.6 & 1.9 & 285.7 & Pt wire & 0.5 M H_2SO_4 \\ \hline MoC-Mo_2C HNWs^{18} & 0.14 & 152 & 43 & 1.1*10^2 & 28.6 & Graphite & 0.5 M H_2SO_4 & \\ \hline 140 & 42 & 1.1*10^2 & 28.6 & Graphite & 0.5 M H_2SO_4 & \\ \hline 30.7 & electrode & 1M KOH & \\ \hline 30.7 & electrode & 1M KOH & \\ \hline MoC_1 & 0.1M phosphate buffer & \\ \hline 110 & & 60.7 & 1M KOH & \\ \hline MoC_x nano-octahedrons^{20} & 0.8 & 160 & 53 & 0.023 & 2.4 & \\ \hline Mo_2C/C^{21} & 0.88 & 160 & 53 & 0.023 & 2.4 & \\ \hline Mo_2C/C^{21} & 0.286 & 150 & 56 & 2.56 & \\ \hline Mo_2C/C^{22} & 1 & 205 & 66.4 & & 2.5 & \\ \hline Mo_2C/WC NWs^{23} & 1.28 & 145 & 52 & 2.9*10^{-2} & 0.4 & Carbon rod & 0.5 M H_2SO_4 & \\ \hline Mo_2C/WC NWs^{23} & 1.28 & 145 & 52 & 2.9*10^{-2} & 0.4 & Carbon rod & 0.5 M H_2SO_4 & \\ \hline Mo_2C(MC^{24} & & 156(\eta_{10}) & 60 & & \\ \hline Mo_2C(MC^{24} & & 156(\eta_{10}) & 60 & & \\ \hline Mo_2C(MC^{24} & & 156(\eta_{10}) & 60 & & \\ \hline Mo_2C(MC^{24} & & 156(\eta_{10}) & 60 & & \\ \hline Mo_2CC(MC^{24} & 0.25 & 105 & 41 & 0.179 & 68 & Pt plate & 0.5 M H_2SO_4 & \\ \hline Mo_2C NPs@ & 0.25 & 105 & 41 & 0.179 & 68 & Pt plate & 0.5 M H_2SO_4 & \\ \hline Mo_2C(C^{27} & 0.213 & 180 & 55 & 0.047 & 0.94 & Glassy & 0.5 M H_2SO_4 & \\ \hline Mo_2C(C^{27} & 0.213 & 180 & 55 & 0.047 & 0.94 & Glassy & 0.5 M H_2SO_4 & \\ \hline \end{array}$	np-Mo ₂ C NWs ¹⁶	0.21	150	53		14.3	Platinum foil	0.5 M H ₂ SO ₄
$ \begin{array}{c c c c c c c c } \begin{tabular}{ c c c c c } \begin{tabular}{ c c c c c c } \label{eq:homological} \end{tabular} \\ \begin{tabular}{ c c c c c c c } \label{eq:homological} \end{tabular} \\ \begin{tabular}{ c c c c c c } \label{eq:homological} \end{tabular} \\ \begin{tabular}{ c c c c c c c } \label{eq:homological} \end{tabular} \\ \begin{tabular}{ c c c c c c c } \label{eq:homological} \end{tabular} \\ \begin{tabular}{ c c c c c c c } \label{eq:homological} \end{tabular} \\ \begin{tabular}{ c c c c c c c c c c c c c } \label{eq:homological} \end{tabular} \\ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Mo ₂ C@NPC/NPRGO ¹⁷	0.14	50	33.6	1.9	285.7	Pt wire	0.5 M H ₂ SO ₄
MoC-Mo ₂ C HNWs ¹⁵ 0.14 140 42 1.1*10 ⁻² 30.7 electrode IM KOH 3DHP-Mo ₂ C ¹⁹ 0.28 140 60 0.28 40.4 0.1M phosphate buffer 10 60.7 1M KOH 0.1M phosphate buffer 1M KOH MoC _x nano-octahedrons ²⁰ 0.8 160 53 0.023 2.4 Graphite rod 0.5 M H ₂ SO ₄ Mo ₂ C/C ²¹ 0.286 140 52 0.286 26.6 Graphite rod 0.5 M H ₂ SO ₄ Mo ₂ C/C ²¹ 0.286 140 52 0.286 25.6 Graphite rod 0.5 M H ₂ SO ₄ Mo ₂ C/C ²² 1 205 66.4 3 Platinum 1M KOH Mo ₂ C/WC NWs ²³ 1.28 145 52 2.9*10 ⁻² 0.4 Carbon rod 0.5 M H ₂ SO ₄ Mo ₂ C/WC NWs ²³ 1.28 145 52 2.9*10 ⁻² Neutral media Mo ₂ C/WC NWs ²³ 1.28 145 52 2.9*10 ⁻²	MoC-Mo ₂ C HNWs ¹⁸	0.1.4	152	43	1 1 * 1 0 2	28.6	Graphite	0.5 M H ₂ SO ₄
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.14	140	42	1.1*10-2	30.7	electrode	1M KOH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			125			42.9		0.5 M H ₂ SO ₄
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3DHP-Mo ₂ C ¹⁹	0.28	140	60	0.28	40.4		0.1M phosphate buffer
MoC _x nano-octahedrons ²⁰ 0.8 160 53 0.023 2.4 Graphite rod 0.5 M H ₂ SO ₄ Mo ₂ C/C ²¹ 0.286 140 52 0.286 26.6 Graphite rod 0.5 M H ₂ SO ₄ Mo ₂ C/C ²¹ 0.286 140 52 0.286 26.6 Graphite rod 0.5 M H ₂ SO ₄ Mo ₂ C/C ²² 1 205 66.4 3 Platinum mesh 1M KOH Mo ₂ C/C ²² 1 205 66.4 3 Platinum mesh 1M KOH Mo ₂ C/WC NWs ²³ 1.28 145 52 2.9*10 ⁻² 0.4 Carbon rod 0.5 M H ₂ SO ₄ Mo ₂ C/QC ²⁴ 156(η ₁₀) 60 9.6*10 ⁻² 0.5 M H ₂ SO ₄ Mo ₂ C NPs@ 156(η ₁₀) 60 0.5 M H ₂ SO ₄ Mo ₂ C NPs@ 156(η ₁₀) 60 Neutral media Mo ₂ C NPs@ 0.25 105 41 0.179 68			110			60.7		1M KOH
MoC _x nano-octahedrons ²⁰ 0.8 175 59 2.5 Graphite rod IM KOH Mo_2C/C^{21} 0.286 140 52 0.286 26.6 Graphite rod 0.5 M H ₂ SO ₄ Mo_2C/C^{22} 1 205 66.4 3 Platinum mesh IM KOH Mo_2C/C^{22} 1 205 66.4 3 Platinum mesh IM KOH $Mo_2C/WC NWs^{23}$ 1.28 145 52 2.9*10 ⁻² 0.4 Carbon rod 0.5 M H ₂ SO ₄ $Mo_2C@NC^{24}$ 156(η ₁₀) 60 0.5 M H ₂ SO ₄ $Mo_2C NPs@$ 156(η ₁₀) 60 1M KOH $Mo_2C NPs@$ 0.25 105 41 0.179 68 Pt plate 0.5 M H ₂ SO ₄ β -Mo ₂ C nanotubes ²⁶ 0.75 197 62 0.017 1.1 0.5 M H ₂ SO ₄ β -Mo ₂ C/C ²⁷ 0.213 180 55 0.047		0.0	160	53	0.023	2.4	0 1:4 1	0.5 M H ₂ SO ₄
$ \frac{Mo_2C/C^{21}}{Mo_2C/C^{22}} = 0.286 + \frac{140}{150} + \frac{52}{56} + \frac{0.286}{25.6} + \frac{26.6}{25.6} + \frac{10.5 \text{ M H}_2\text{SO}_4}{1 \text{ M KOH}} + \frac{1000 \text{ M KOH}}{1 \text{ M KOH}} + \frac{1000 \text{ M KOH}}{1 \text{ M KOH}} + \frac{1000 \text{ M S}^{23}}{1.28} + \frac{124(\eta_{10})}{156(\eta_{10})} + \frac{9.6^{\ast}10^{-2} \text{ Cm}^{-2}}{1.28} + \frac{124(\eta_{10})}{1.28} + \frac{124(\eta_{10})}{$	MoC_x nano-octahedrons ²⁰	0.8	175	59		2.5	Graphite rod	1M KOH
$ \frac{Mo_{2}C/C^{21}}{Mo_{2}C/C^{22}} = 1 + \frac{150}{205} + \frac{56}{66.4} + \frac{150}{} + \frac{3}{3} + \frac{100}{1000} + \frac{1000}{10000000000000000000000000000000$		1	140	52	0.000	26.6	0 1:4 1	0.5 M H ₂ SO ₄
$ \frac{Mo_2C/C^{22}}{Mo_2C/WC NWs^{23}} = \frac{1}{1.28} + \frac{205}{145} + \frac{66.4}{52} + {2.9*10^{-2}} + \frac{3}{0.4} + \frac{Platinum}{mesh} + \frac{1M \text{ KOH}}{1M \text{ KOH}} \\ \frac{Mo_2C/WC NWs^{23}}{Mo_2C@NC^{24}} = \frac{124(\eta_{10})}{} + \frac{9.6*10^{-2}}{} + {0.5 \text{ M H}_2SO_4} \\ \frac{124(\eta_{10})}{60(\eta_{10})} + \frac{9.6*10^{-2}}{} + {} + \frac{0.5 \text{ M H}_2SO_4}{100(\eta_{10})} \\ \frac{Mo_2C NPs@}{carbon^{25}} + \frac{0.25}{105} + \frac{105}{41} + \frac{0.179}{0.179} + \frac{68}{68} + \frac{Pt \text{ plate}}{Pt \text{ plate}} + \frac{0.5 \text{ M H}_2SO_4}{0.5 \text{ M H}_2SO_4} \\ \frac{\beta-Mo_2C \text{ nanotubes}^{26}}{127} + \frac{0.75}{55} + \frac{197}{0.087} + \frac{3}{8.3} + \frac{0.5 \text{ M H}_2SO_4}{0.1 \text{ M KOH}} \\ \frac{Mo_2C/C^{27}}{127} + \frac{0.213}{180} + \frac{180}{55} + \frac{0.047}{0.047} + \frac{0.94}{0.94} + \frac{0.5 \text{ M H}_2SO_4}{0.5 \text{ M H}_2SO_4} \\ \frac{1000}{100} + $	Mo_2C/C^{21}	0.286	150	56	0.286	25.6	Graphite rod	1M KOH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo ₂ C/C ²²	1	205	66.4		3	Platinum mesh	1M KOH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo ₂ C/WC NWs ²³	1.28	145	52	2.9*10 ⁻²	0.4	Carbon rod	0.5 M H ₂ SO ₄
$ \begin{array}{ccccccc} Mo_2 C@NC^{24} & & & & & & & & & & & & & & & & & & &$			124(n ₁₀)		0 (*10-2			0.5 M H ₂ SO ₄
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo ₂ C@NC ²⁴		156(ŋ ₁₀)	60	9.6*10			Neutral media
$\begin{tabular}{ c c c c c c c c c c c c c c c } \hline Mo_2C NPs@ & 0.25 & 105 & 41 & 0.179 & 68 & Pt plate & 0.5 M H_2SO_4 \\ \hline & & & & & & & & & & & & & & & & & &$			60(ŋ ₁₀)					1M KOH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo ₂ C NPs@ carbon ²⁵	0.25	105	41	0.179	68	Pt plate	0.5 M H ₂ SO ₄
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q Ma C rest 1	0.75	197	62	0.017	1.1		0.5 M H ₂ SO ₄
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	p-1VIO ₂ U nanotubes ²⁰	0.75	127	55	0.087	8.3		0.1M KOH
	Mo ₂ C/C ²⁷	0.213	180	55	0.047	0.94	Glassy	0.5 M H ₂ SO ₄

Table S3. Key performance of representative Mo-based nanostructures.

	carbon						
Mo ₂ C nanorod ²⁸	0.42	175	58	0.033	4.7	Dr. C. 1	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$
	0.43	180	45	0.011	14.0	Pt Ioli	1M KOH
	1.02	150	43	0.0151	3.9	Combits and	$0.5 \text{ M H}_2\text{SO}_4$
nanomoc@GS2	0.76	90	50	0.212	46.1	Graphile rod	1M KOH
Ni-Mo ₂ C/C MF ³⁰	1	128	73		10.5	Platinum plate	1М КОН
Mo-W ₁₈ O ₄₉ ³¹	0.8	75	54	0.5	>25	Pt	$0.5 \ M \ H_2 SO_4$
NFL MoO ₂ /NF ³²	4.5	80	66	1.8	6.7	Graphite rod	1M KOH
MoO ₂ @PC-RGO ³³	0.14	90	41	0.48	>142.9	Pt wire	0.5 M H ₂ SO ₄
Porous MoO ₂ /Ni foam ³⁴	3.4	40	41		>8.8	Graphite rod	1 М КОН
25	0.2	170	56		20		0.1 M KOH
M0O _{3-x} 55	0.2	240	72		20	Graphite rod	$0.1 \text{ M} \text{H}_2 \text{SO}_4$
MoO ₂ /RGO/PI-CNT film ³⁶	0.04	170	68		250	Pt wire	0.5 M H ₂ SO ₄
MoO _x /MoS ₂ ³⁷	0.273	320	63		0.4	Pt sheet	$0.5 \text{ M H}_2\text{SO}_4$
MoS ₂ /MoO ₂ ³⁸	0.2	205	51		0.5	Graphite rod	0.5 M H ₂ SO ₄
P doped MoO _{3-x} ³⁹	0.2	180	42	2	0.5	Platinum	$0.5 \text{ M H}_2\text{SO}_4$
		260	53		0.5	foil	0.1 M KOH
MoO ₃ ⁴⁰		130(ŋ ₁₀)	131	2.1		Pt wire	1 M H ₂ SO ₄
MoO ₂ /MoC@C This work	0.57	133 203	77.3 104.7	0.371 0.267	12.5 4.1	Graphite rod	0.5 M H ₂ SO ₄ 1 M KOH

[a] η_{20} : Overpotential required to drive a current density of 20 mA cm⁻². [b] J₀: Exchange current density. [c] η_{10} : Overpotential required to drive a current density of 10 mA cm⁻². [d] η_8 : Overpotential required to drive a current density of 8 mA cm⁻². [e] η_5 : Overpotential required to drive a current density of 5 mA cm⁻². [f] η_4 : Overpotential required to drive a current density of 4 mA cm⁻². [g] J 100 mass activity: Current density according to the loading mass of catalysts at overpotential of 100 mV. J 100 mass activity=j/m, where j is the current density and m is the loading mass of catalysts on the electrode.

Fig. S10. Equivalent circuit used to fit the EIS data. R_s is the overall series resistance, CPE₁ and R_1 are the constant phase element and resistance describing electron transport at GCE/electrocatalyst interface, respectively, CPE_{dl} is the constant phase element of the electrocatalyst/electrolyte interface, and R_{ct} is the charge transfer resistance at electrocatalyst /electrolyte interface.

Sample	R_s	Q_1 (F cm ⁻² S ⁿ⁻¹)	n ₁	R_1	Q_{ct} (F cm ⁻² S ⁿ⁻¹)	n _{ct}	R_{ct}
MoO ₂ @C-750	7.0	7.649 e-4	0.7086	17.6	8.172 e-3	0.2617	167.4
MoO ₂ @C-850	8.4	2.024e-3	0.7617	2.3	6.523e-3	0.4605	25.8
MoO ₂ @C-950	7.7	7.333e-4	0.7022	14.1	9.027e-4	0.3874	120.8

Table S4. The fitting results of EIS spectra in acid solution

Fig. S11. Nitrogen adsorption/desorption isotherm of $MoO_2/MoC@C-750$, $MoO_2/MoC@C-850$ and $MoO_2/MoC@C-950$.

Fig. S12. Cyclic voltammograms in the region of 0.1-0.2 V vs. RHE for the (a) $MoO_2/MoC@C-750$, (b) $MoO_2/MoC@C-850$, and (c) $MoO_2/MoC@C-950$.

Crystal face	Surface energy (eV/Å ²)
(001)	0.20
(010)	0.20
(100)	0.19
(101)	0.14
(110)	0.16
(011)	0.18
(111)	0.16

 Table S5. Surface energy of MoO₂.

Table 50. Bullace energy of whoe.					
Crystal face	Surface energy (eV/Å ²)				
(001)	0.14				
(011)	0.19				
(111)	0.20				

Table S6. Surface energy of MoC.

Fig. S13. Optimized structures of H* adsorbed on the surface of (a) MoO_2 (101) plane and (b) MoC (001) plane. Cyan balls denote molybdenum atoms, red ones denote oxygen atoms, gray ones denote carbon atoms, and white ones denote hydrogen atoms.

Reference

- S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 2005, 220, 567-570.
- 2. G. Kresse and J. Hafner, J. Phys. Cond. Matter, 1994, 6, 8245-8257.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 4. P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen, J. Su and Q. Chen, *J. Mater. Chem. A*, 2017, **5**, 5475-5485
- 5. H. Vrubel and X. Hu, Angew. Chem. Int. Ed., 2012, 51, 12703-12706.
- 6. W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu and R. R. Adzic, *Energy Environ. Sci.*, 2013, **6**, 943-951.
- C. Ge, P. Jiang, W. Cui, Z. Pu, Z. Xing, A. M. Asiri, A. Y. Obaid, X. Sun and J. Tian, *Electrochim. Acta*, 2014, **134**, 182-186.
- L. Peng, Y. Nie, L. Zhang, R. Xiang, J. Wang, H. Chen, K. Chen and Z. Wei, *ChemCatChem*, 2017, 9, 1588-1593.
- J. Wu, L. Ma, A. Samanta, M. Liu, B. Li, Y. Yang, J. Yuan, J. Zhang, Y. Gong, J. Lou, R. Vajtai, B. Yakobson, A. K. Singh, C. S. Tiwary and P. M. Ajayan, *Adv. Mater. Interfaces*, 2017, 4, 1600866-1600871.
- 10. C. Wan and B. M. Leonard, Chem. Mater., 2015, 27, 4281-4288.
- 11. A. C. Mtukula, X. Bo and L. Guo, J. Alloy. Compd., 2017, 692, 614-621.
- 12. C. He and J. Tao, J. Catal., 2017, **347**, 63-71.
- T. Wang, Y. Guo, Z. Zhou, X. Chang, J. Zheng and X. Li, *ACS Nano*, 2016, 10, 10397-10403.
- K. Xiong, L. Li, L. Zhang, W. Ding, L. Peng, Y. Wang, S. Chen, S. Tan and Z. Wei, *J. Mater. Chem. A*, 2015, 3, 1863-1867.
- H. Lin, N. Liu, Z. Shi, Y. Guo, Y. Tang and Q. Gao, *Adv. Funct. Mater.*, 2016, 26, 5590-5598.
- L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. D. Scanlon, X. Hu, Y. Tang, B. Liu and H. H. Girault, *Energy Environ. Sci.*, 2014, 7, 387-392.
- 17. J. Li, Y. Wang, C. Liu, S. Li, Y. Wang, L. Dong, Z. Dai, Y. Li and Y. Lan, *Nat. Commun.*, 2016, **7**, 11204-11211.
- 18. H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao and Y. Tang, *Chem. Sci.*, 2016, 7, 3399-3405.
- H. Ang, H. Wang, B. Li, Y. Zong, X. Wang and Q. Yan, *Small*, 2016, 12, 2859-2865.
- 20. H. Wu, B. Xia, L. Yu, X. Yu and X. Lou, *Nat. Commun.*, 2015, 6, 6512-6519.
- 21. Y. Mu, Y. Zhang, L. Fang, L. Liu, H. Zhang and Y. Wang, *Electrochim. Acta*, 2016, **215**, 357-365.
- 22. M. Qamar, A. Adam, B. Merzougui, A. Helal, O. Abdulhamid and M. N. Siddiqui, *J. Mater. Chem. A*, 2016, **4**, 16225-16232.
- 23. P. Xiao, X. Ge, H. Wang, Z. Liu, A. Fisher and X. Wang, *Adv. Funct. Mater.*, 2015, **25**, 1520-1526.
- 24. Y. Liu, G. Yu, G. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, *Angew. Chem. Int. Ed.*, 2015, **54**, 10752-10757.
- 25. R. Ma, Y. Zhou, Y. Chen, P. Li, Q. Liu and J. Wang, Angew. Chem. Int. Ed.,

2015, **54**, 14723-14727.

- 26. F. Ma, H. Wu, B. Xia, C. Xu and X. Lou, *Angew. Chem. Int. Ed.*, 2015, **54**, 15395-15399.
- 27. C. Tang, Z. Wu and D. Wang, *ChemCatChem*, 2016, **8**, 1961-1967.
- 28. P. Xiao, Y. Yan, X. Ge, Z. Liu, J.-Y. Wang and X. Wang, *Appl. Catal. B-Environ.*, 2014, **154-155**, 232-237.
- 29. Z. Shi, Y. Wang, H. Lin, H. Zhang, M. Shen, S. Xie, Y. Zhang, Q. Gao and Y. Tang, *J. Mater. Chem. A*, 2016, **4**, 6006-6013.
- 30. L. Sun, C. Wang, Q. Sun, Y. Cheng and L. Wang, *Chem. Eur. J.*, 2017, 23, 4644-4650.
- 31. X. Zhong, Y. Sun, X. Chen, G. Zhuang, X. Li and J. Wang, *Adv. Funct. Mater.*, 2016, **26**, 5778-5786.
- 32. Y. Jin and P. K. Shen, J. Mater. Chem. A, 2015, 3, 20080-20085.
- 33. Y. Tang, M. Gao, C. Liu, S. Li, H. Jiang, Y. Lan, M. Han and S. Yu, *Angew. Chem. Int. Ed.*, 2015, **54**, 12928-12932.
- Y. Jin, H. Wang, J. Li, X. Yue, Y. Han, P. Shen and Y. Cui, *Adv. Mater.*, 2016, 28, 3785-3790.
- Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad and S. L. Suib, *Adv. Energy Mater.*, 2016, 6, 1600528-1600538.
- 36. X. Li, Y. Jiang, L. Jia and C. Wang, J. Power Source, 2016, 304, 146-154.
- 37. B. Jin, X. Zhou, L. Huang, M. Licklederer, M. Yang and P. Schmuki, *Angew. Chem. Int. Ed.*, 2016, **55**, 12252 -12256.
- 38. J. Wang, W. Wang, Z. Wang, J. G. Chen and C. Liu, *ACS Catal.*, 2017, **6**, 6585-6590.
- 39. L. Li, T. Zhang, J. Yan, X. Cai and S. Liu, *Small*, 2017, **13**, 1700441-1700447.
- 40. H. Sinaim, D. J. Ham, J. S. Lee, A. Phuruangrat, S. Thongtem and T. Thongtem, *J. Alloy. Compd.*, 2012, **516**, 172-178.