One-step synthesis of ZnS-N/C nanocomposites derived from Zn-based chiral metal-organic frameworks with high photocatalytic activity for selective oxidation of *cis*cyclooctene Supporting Information

Xiaoling Lin,^a Beibei Liu,^a Hui Huang,^a* Chunfeng Shi,^b* Yang Liu^a* and Zhenhui Kang^a*

^a Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China

E-mail: hhuang0618@suda.edu.cn, yangl@suda.edu.cn, zhkang@suda.edu.cn

^b State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China

E-mail: shicf.ripp@sinopec.com

	L-1	D-1
Empirical formula	$C_{20}H_{17}Cl_2N_3O_4SZn$	$C_{20}H_{17}Cl_2N_3O_4SZn$
Formula weight	531.70	531.70
Crystal system	Monoclinic	Monoclinic
Space group	C2	<i>C</i> 2
<i>a</i> (Å)	17.3215(10)	17.3808(10)
<i>b</i> (Å)	10.3684(6)	10.3874(6)
<i>c</i> (Å)	14.0444(8)	14.2015(13)
α (deg)	90.00	90.00
β (deg)	124.8310(10)	125.0040(10)
γ (deg)	90.00	90.00
$V(Å^3)$	2070.4(2)	2100.2(3)
Ζ	4	4
$D_{\rm c}$ (g/cm ³)	1.706	1.682
μ (mm ⁻¹)	1.580	1.557
F(000)	1080.0	1080.0
Collcd reflns	5520	5503
Unique reflns	3562	3084
parameters	280	280
$R_{ m int}$	0.0224	0.0153
GOF	0.884	0.989
R_1^a [I>2 σ (I)]	0.0238	0.0189
wR_2^{b} (all data)	0.0489	0.0461

 Table S1. Crystal data and structure refinements for compounds L-1 and D-1.

 Table S2. Selected bond lengths (Å) and angles (°) for L-1 and D-1

L-1			
Zn(1)-O(2)#1	1.9664(19)	Zn(1)-N(2)	2.058(2)
Zn(1)-N(1)	1.952(2)	Zn(1)-N(3)#2	2.077(2)
O(2)#1-Zn(1)-N(2)	102.31(9)	N(1)-Zn(1)-N(2)	118.71(9)
O(2)#1-Zn(1)-N(3)#2	296.06(9)	N(1)-Zn(1)-N(3)#2	111.71(9)
N(1)-Zn(1)-O(2)#1	121.62(10)	N(2)-Zn(1)-N(3)#2	102.73(9)
D-1			
Zn(1)-O(2)#1	1.9601(16)	Zn(1)-N(2)	2.0662(19)
Zn(1)-N(1)	1.9452(19)	Zn(1)-N(3)#2	2.0766(18)
O(2)#1-Zn(1)-N(2)	101.98(8)	N(1)-Zn(1)-N(2)	118.59(8)
O(2)#1-Zn(1)-N(3)#2	296.41(7)	N(1)-Zn(1)-N(3)#2	111.61(8)
N(1)-Zn(1)-O(2)#1	121.71(8)	N(2)-Zn(1)-N(3)#2	102.97(8)

Symmetry code: (#1) 1/2-x,1/2+y,-z, (#2) 1-x,1+y,1-z for L-1 (#1) 1/2-x,-1/2+y,-z, (#2) 1-x,-1+y,1-z for D-1.

	Product Select	tivity (%)		
Reaction time (h)	$\overset{\texttt{A}}{\bigcirc}$		Conversion (%)	$\Sigma_{sel}C_8{}^b$
0	0	0	0	0
8	78.32(1.4)	13.47(1.3)	19.31(1.2)	99.98(1.0)
16	81.56(1.3)	10.44(1.3)	28.18(1.3)	99.79(1.1)
24	84.25(1.3)	9.49(1.2)	36.02(1.1)	99.72(1.0)
32	86.75(1.1)	7.54(1.3)	46.56(1.2)	99.51(1.2)
40	90.52(1.0)	5.21(1.3)	57.58(1.0)	99.35(1.2)
48	93.42(0.5)	3.96(1.4)	66.32(0.5)	99.29(1.2)

Table S3. The effect of reaction time on selective oxidation of *cis*-cyclooctene with error under visible light irradiation.^a

^aReaction conditions: Zn-N/C nanocomposites (0.05 g), *cis*-cyclooctene (10 mL), TBHP (0.5 mL), 80°C, under visible light irradiation. ^bTotal selectivity to C_8 partial oxidation products.

Table S4. The conversion of *cis*-cyclooctene and selectivity for epoxycyclooctanewith erroron the reaction time under visiblelight irradiationby using differentcatalysts. ^a

Daga	ZnS-N/C		N-doped carbon		ZnS		ZnS	S/C	none		
tion		Produ		Produ		Produ		Produ	Conve	Produ	
time	Conve	ct	Conve	ct	Conve	ct	Conve	ct	rsion	ct	
(h)	rsion	select	rsion	select	rsion	select	rsion	select	(%)	select	
(11)	(%)	ivity	(%)	ivity	(%)	ivity	(%)	ivity		ivity	
		(%)		(%)		(%)		(%)		(%)	
0	0	0	0	0	0	0	0	0	0	0	
0	19.31	78.32	1.23	13.67	2.35	3.63	10.32	43.32	0.13	0.27	
0	(1.2)	(1.4)	(1.4)	(1.4)	(1.4)	(1.5)	(1.4	(1.3)	(0.1)	(0.1)	
16	28.18	81.56	3.75	14.95	5.65	3.98	13.46	54.55	0.15	0.29	
10	(1.3)	(1.3)	(1.4)	(1.3)	(1.4)	(1.4)	(1.3)	(1.3)	(0.1)	(0.1)	
24	36.02	84.25	7.89	11.73	9.27	4.23	17.58	51.53	0.18	0.23	
24	(1.1)	(1.3)	(1.3)	(1.3)	(1.3)	(1.4)	(1.2)	(1.3)	(0.1)	(0.1)	
22	46.56	86.75	11.37	10.26	10.75	5.21	21.33	60.28	0.17	0.29	
52	(1.2)	(1.1)	(1.2)	(1.2)	(1.3)	(1.4)	(1.1)	(1.3)	(0.1)	(0.1)	
40	57.58	90.52	13.53	8.76	12.23	5.86	23.56	58.79	0.15	0.27	
40	(1.0)	(1.0)	(1.1)	(1.2)	(1.3)	(1.4)	(1.1)	(1.2)	(0.1)	(0.1)	
19	66.32	93.42	15.74	4.32	13.02	5.32	25.47	59.92	0.19	0.23	
40	(0.5)	(0.5)	(1.1)	(1.4)	(1.2)	(1.3)	(1.0)	(1.2)	(0.1)	(0.1)	
a D	4:	1:4:	0.05 -	4 - 1 4	- (7. C)	T/C		.: NT	1	1	

^aReaction conditions: 0.05 g catalysts (ZnS-N/C nanocomposites, N-doped carbon, ZnS ZnS/C nanocomposites and without catalyst), *cis*-cyclooctene (10 mL), TBHP

(0.5 mL), 80°C, under visible light irradiation.

Table S5. The conversion of *cis*-cyclooctene and selectivity for epoxycyclooctanewith error on reaction time under visible light irradiation by using ZnS-N/Cnanocomposites with different atmosphere.^a

		O_2		N ₂
Reaction time (h)	Conversion	Product selectivity	Conversion	Product selectivity
	(%)	(%)	(%)	(%)
0	0	0	0	0
8	19.31(1.2)	78.32(1.4)	0.76(1.5)	2.33(1.5)
16	28.18(1.3)	81.56(1.3)	1.15(1.5)	4.24(1.5)
24	36.02(1.1)	84.25(1.3)	1.59(1.4)	7.64(1.4)
32	46.56(1.2)	86.75(1.1)	1.96(1.5)	11.09(1.5)
40	57.58(1.0)	90.52(1.0)	2.04(1.4)	15.64(1.3)
48	66.32(0.5)	93.42(0.5)	2.56(1.4)	18.97(1.2)

^aReaction conditions: ZnS-N/C nanocomposites (0.05 g), *cis*-cyclooctene (10 mL), TBHP (0.5 mL), 80°C, under O_2 and N_2 atmosphere with visible light irradiation, respectively.

Table	S6 .	The	effect	of	reaction	time	on	selective	oxidation	of	cis-cyclooctene	with
error u	ndei	darl	x with	Zn	-N/C nan	ocom	pos	sites as ca	talyst. ^a			

	Product Sel	ectivity (%)		
Reaction time (h)	Ŷ	°	Conversion (%)	$\Sigma_{sel}C_8{}^b$
0	0	0	0	0
8	77.02(1.3)	13.09(1.4)	2.03(1.4)	99.75(1.2)
16	80.49(1.3)	10.58(1.3)	4.24(1.4)	99.59(1.3)
24	83.28(1.2)	8.93(1.4)	7.64(1.3)	99.45(1.2)
32	84.92(1.2)	7.56(1.4)	11.09(1.2)	99.37(1.2)
40	87.36(1.3)	6.65(1.5)	15.64(1.2)	99.12(1.4)
48	89.57(1.3)	5.24(1.5)	18.97(1.2)	98.89(1.4)

^aReaction conditions: ZnS-N/C nanocomposites (0.05 g), *cis*-cyclooctene (10 mL), TBHP (0.5 mL), 80°C, under dark. ^bTotal selectivity to C₈ partial oxidation products.

Table S7. The effect of reaction time on selective oxidation of *cis*-cyclooctene with error under visible light irradiation by using the physical mixture of ZnS and N-doped carbon as catalyst.^a

	Physical mixture of ZnS and N-doped carbon				
		Product selectivity			
Ponction time (h)	Conversion	(%)			
Reaction time (ii)	(%)				
0	0	0			
8	1.23(1.4)	13.67(1.4)			
16	3.75(1.4)	14.95(1.3)			
24	7.89(1.3)	11.73(1.3)			
32	11.37(1.2)	10.26(1.2)			
40	13.53(1.1)	8.76(1.2)			
48	25.74(1.0)	4.32(1.4)			

^aReaction conditions: materials of ZnS and N-doped carbon (0.05 g), *cis*-cyclooctene (10 mL), TBHP (0.5 mL), 80°C, under visible light irradiation. ^bTotal selectivity to C_8 partial oxidation products.

Table S8 The electrochemical band gaps of ZnS-N/C nanocomposites, ZnS/C and N-doped carbon with the cyclic voltammetry (CV) method and the band gap of ZnS with reference S1.

Catalyst	Cyclic vo	Cyclic voltammetry				
Cataryst	HOMO/eV	LUMO/eV	Dand-gap/ev			
ZnS-N/C	-6.18	-4.37	1.81			
ZnS/C	-6.05	-4.57	1.48			
N-doped carbon	-5.76	-4.74	1.02			
ZnS			3.68 ^{S1}			

Fig. S1 (a) The photo of L-1 (white) and D-1 (orange). (b) SEM image of ZnS-N/C nanocomposites.

Fig. S2 EDS spectrum of ZnS-N/C nanocomposites.

Fig. S3 TEM image of N-doped carbon.

Fig. S4 UV-vis absorption spectra of ZnS-N/C nanocomposites, N-doped carbon and ZnS (black, red and blue traces, respectively).

Fig. S5 CV curves of ZnS-N/C nanocomposites (a), ZnS /C (b) and N-doped carbon (c).

Fig. S6 (a) Nitrogen adsorption-desorption isotherms of ZnS-N/C nanocomposites, ZnS and N-doped carbon. (b, c and d) pore size distributions of ZnS-N/C nanocomposites, N-doped carbon and ZnS, respectively.

Fig. S7 The relationship between the conversion and the concentration of ZnS-N/C nanocomposites.

Fig. S8 XPS spectra of the as-obtained sample after catalytic reaction.

The full XPS survey spectrum in Fig. S7a shows that the sample contains C, N, O, Zn and S elements without other impurities. The C 1s XPS spectrum is shown in Fig. S7b, which can be divided into five peaks at 284.60, 285.25, 286.09, 287.32 and 289.15 eV, corresponding to C=C, C-C, C-O/C-N, C=O/C=N and COO-, respectively.^{S2} The N 1s spectrum is shown in Fig. S7c, in which the peaks at 398.85, 400.14 and 401.08 eV attribute to the pyridinic, pyridonic and graphitic nitrogen species, respectively.^{S3} The O 1s XPS spectrum in Fig. S7d shows for peaks at 530.30, 531.65, 532.54 and 533.67 eV, which are attributed to quinone, C-O/O-S, C=O/O=S, and COO-,

respectively.^{S4} Fig. S7e shows the XPS spectrum of Zn 2p. The two peaks at 1022.33 and 1045.76 eV correspond to the Zn $2p_{3/2}$ and Zn $2p_{1/2}$, which is assigned to Zn^{2+} .^{S5} Fig. S7f shows the S 2p XPS spectrum with peaks located at 162.32 and 163.41 eV for S $2p_{3/2}$ and S $2p_{1/2}$, respectively, which are characteristic of S²⁻ in the ZnS phase.^{S5}

References

- 1 P. E. Lippens, M. Lannoo, Phys. Rev. B, 1989, 39, 10935.
- 2 L. B. Tang, R. B. Ji, X. K. Cao, J. Y. Lin, H. X. Jiang, X. M. Li, K. S. Teng, C. M. Luk, S. J.
- Zeng, J. H. Hao, S. P. Lau, ACS nano, 2012, 6, 5102.
- 3 G. D. Yang, Z. Jiang, H. H. Shi, T. C. Xiao, Z. F. Yan, J. Mater. Chem., 2010, 20, 5301.
- 4 W. L. Li, Y. P. Hu, E. Rodíguez-Castellón, T. J. Bandosz, J. Mater. Chem. A, 2017, 5, 16315.
- 5 X. Yang, H. T. Xue, J. Xu, X. Huang, J. Zhang, Y. B. Tang, T. W. Ng, H. L. Kwong, X. M. Meng, C. S. Lee, ACS Appl. Mater. Interfaces, 2014, 6, 9078.