Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information Spiky TiO₂/Au nanorod nanohybrids for enhanced hydrogen evolution and photocurrent generation

Shan Zeng^a, Hang Sun^a,*, Yilun Wu^b, Yinxing Shang^a, Ping She^a, Qinrong He^a, Shengyan Yin^b, Zhenning Liu ^a,*

- ^a Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
- ^b State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China

^{*}Corresponding author email: sunhang@jlu.edu.cn; liu_zhenning@jlu.edu.cn

Preparation of spiky TiO2/AuNS nanohybrids

AuNSs were used in place of AuNRs to prepare spiky TiO₂/AuNS nanohybrids under otherwise identical conditions. Specifically, the as-prepared citrate-stabilized AuNSs solution (30 nm, 16 mL) was concentrated by centrifugation at 6000 rpm for 8 min to remove the aqueous supernatant. Subsequently, the concentrated AuNSs were added into 8 mL CTAB (0.1 mM) to exchange with citrate. After 24 h incubation, the obtained AuNSs were concentrated by centrifugation and used to prepare spiky TiO₂/AuNS nanohybrids following the same steps as that of spiky TiO₂/AuNR nanohybrids.

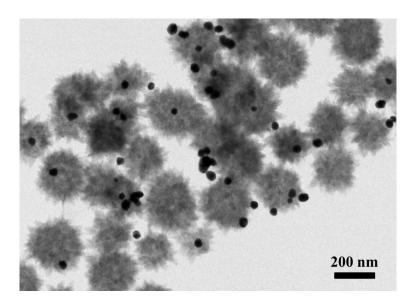


Fig. S1 TEM image of spiky TiO₂/AuNS nanohybrids.