Electronic Supporting Information for

Facile and cost-effective growth of highly efficient MgCo₂O₄ electrocatalyst

for methanol oxidation

Harsharaj S. Jadhav, Animesh Roy, Gaurav M. Thorat, Jeong Gil Seo*

Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Nam-dong, Cheoin-gu, Yongin-si, Republic of Korea.

Fig. S1: TGA analysis of precursor carried out between 25 to 800 °C in air atmosphere.

The total weight loss of 27.5% was observed during the TGA analysis of sample. The weight loss was mainly observed in two steps. The first weight loss of ~4% upto 220 °C was mainly attributed to loss of residual water, burnout organic species involved in precursor powder and second weight loss of ~23.5% upto 380 °C was mainly attributed to the to the conversion of as prepared to pure MgCo₂O₄.

Fig. S2: XRD pattern of (a) MgCo-precursor (b) $MgCo_2O_4$ powder annealed at 400 °C for 2h in air atmosphere.

Fig.S3: FE-SEM images of Co₃O₄/NF at different magnifications.

Fig. S4: (a) EDS elemental color mapping (b) EDS spectrum of $MgCo_2O_4$ nanorods.

Fig. S5: (a) Nitrogen adsorption-desorption isotherm (b) BJH pore size distribution for the $MgCo_2O_4$.

Fig. S6: CV curves of bare NF, Co_3O_4/NF and $MgCo_2O_4/NF$ electrode in 1M KOH at scan rate of 10 mV S⁻¹.

No.	Catalyst	Method	Electrolyte	Potential	Current	Scan	Stability	Ref
			(M)	window	density	rate		
				(V)		(mV s ⁻¹)		
1	NiCo ₂ O ₄	Grinding	1M KOH		400		76% retention after 500	3
	/MWCNT	followed by	+6.0M methanol	0-0.8	mA cm ⁻²	100	cycles	
		calcination					-	
2	Co ₃ O ₄	Hydrothermal	1M KOH	0-0.75	140	25	100% retention after	11
	/NiO	-	+0.5M methanol		mA cm ⁻²		500 cycles	
3	NiCo ₂ O ₄	Electrodeposition	1M KOH	0-0.6	50	10	91% retention after	12
			+0.5M methanol		A g ⁻¹		1000 cycles	
4	CuCo ₂ O ₄	Hydrothermal	1M KOH	0-0.6	51	NA	NA	13
		_	+0.5M methanol		A g ⁻¹			
5	MnCo ₂ O ₄	Co-precipitation	1M KOH	0-0.7	80	10	92% retention after 500	14
			+0.5M methanol		A g ⁻¹		cycles	
6	NiCo ₂ O ₄	Hydrothermal	0.1M KOH	0-0.8	0.035	50	79.3% retention after	22
	/rGO	-	+0.5M methanol		mA cm ⁻²		500 cycles	
7	NiCo ₂ O ₄	Hydrothermal	1M KOH	0-0.7	51	10	92% retention after 500	23
		-	+0.5M methanol		A g ⁻¹		cycles	
8	NiCo ₂ O ₄	Hydrothermal	1M KOH	0-0.6	134	10	88% retention after 500	25
		-	+0.5M methanol		mA cm ⁻²		cycles	
9	MgCo ₂ O ₄	Co-precipitation	1M KOH	0-0.65	98	10	94% retention after 500	This
	_		+0.5M methanol		A g ⁻¹		cycles	work

Table S1: Comparison of different spinel oxide material used as an electro-catalyst for methanol oxidation.

Fig. S7: FE-SEM image of $MgCo_2O_4/NF$ electrode after cycling test.

Fig. S8 (a, b) CV curves of Co_3O_4 /NF and $MgCo_2O_4$ /NF in non-faradic region (0.05-0.1 V vs. Ag/AgCl) at different scan rate ranging from 10-50 mV S⁻¹ (c, d) The graphs of anodic current density (measured at 0.085 V vs. Ag/AgCl) versus scan rate.

Active site calculation:

The number of active sites (n) examined by CVs of electrodes carried out in phosphate buffer solution (pH=7) at the scan rate of 50 mV s⁻¹. The value of n (mole) can be calculated using equation 2, after determining the number of voltammetric charges (Q) after deduction of bare NF value.

$$n = \frac{Q}{2F} \tag{S1}$$

Where F is Faraday constant (96480 C mol⁻¹).

The value of Q for bare NF, Co_3O_4 /NF and $MgCo_2O_4$ /NF catalyst electrodes were 8.08 x 10⁻³ C, 2.861 x 10⁻¹ C and 9.234 x 10⁻¹ C(Obtained from Figure S8).

Fig. S9: CVs of bare NF, Co_3O_4/NF and $MgCo_2O_4/NF$ catalyst electrodes in Phosphate buffer solution (pH=7) between -0.2 to 0.6 V at the scan rate of 50 mV s⁻¹.