Type of manuscript: Article

Supporting Information

Fabrication of TiO_2 trapped meso/macroporous $g-C_3N_4$ heterojunction photocatalyst and understanding for its enhanced photocatalytic activity based on the optical simulation analysis

Wanbao Wu, ^{a,1} Xu Li, ^{a,1} Zhaohui Ruan, ^{b,1} Yudong Li, ^a Xianzhu Xu, ^a Yuan Yuan, ^{*b} Kaifeng Lin^{*a}

^aMIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Emails of corresponding authors: <u>linkaifeng@hit.edu.cn</u>

^bSchool of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China. Emails of corresponding authors: <u>yuanyuan83@hit.edu.cn</u>

Experimental Section

Characterization

X-ray Diffraction (XRD) measurement was conducted to characterize crystal structure of asprepared samples on Bruker D8 Advance diffractometer by using Cu Ka radiation. Fourier Transform Infrared (FT-IR) spectra was tested in Perkin Elmer 100 spectrometer. The thermal stability of samples was performed by using thermogravimetric (TG) analysis with NETZSCH Instrument STA 449 F3 Jupiter. X-ray photoelectron spectra (XPS) were was used to characterize the chemical state of elements in the as-prepared samples with PHI 5700 ESCA system equipped with an A1 K α radiation as a source (hv = 1486.6 eV). A Hitachi S-4800 model microscope was adoped to observe the morphologies of as-prepared samples. Transmission electron microscopy (TEM) images were obtained on a Topcon 002B. UV-vis diffuse reflection spectra (BaSO₄ as the reflectance standard) was analyzed on Perkin Elmer Lambda 750 spectrophotometer from 200 to 800 nm. The BET surface area and pore-size distribution were recorded on Micromeritics ASAP2020. Meanwhile, the photoluminescence (PL) measurement were performed using PerkinElmer LS-55 with 375 nm as excitation wavelength under liquid nitrogen conditions. Supporting Figures (S1-S12), Tables S1.

Fig. S1 Fourier transform infrared (FI-IR) spectra of TiO_2 , physical mixture, mm-C₃N₄, and mm-CNT heterojunctions respectively

Fig. S2 (a) XPS survey spectrum of mm-CNT-300-4.3 and high-resolution spectra of (b) C1s, (c) N1s, (d) O1s and (e) Ti2p for mm-CNT-300-4.3.

Fig. S3 TGA curves for the physical mixture, mm- C_3N_4 and mm-CNT heterojunctions respectively.

Sample	mm-C ₃ N ₄	mm-CNT-300-2.1	mm-CNT-300-4.3	mm-CNT-300-17.1	physical mixture
S _{BET} (m²g ⁻ 1)	37.5	55.0	63.6	71.7	22.5
Pore Volume (cm ³ g- ¹)	0.28	0.28	0.29	0.30	0.14
Average pore size (nm)	36	24	20	27	32

Table S1 physical properties of the as-prepared samples.

Fig. S4 (a-b) SEM images and (c-f) EDS mapping of mm-CNT-300-4.3.

Fig. S5 Kinetic curves for the RhB photodegradation over $mm-C_3N_4$, physical mixture and $mm-C_3N_4$.

Fig. S6 Cycle runs of physical mixture for degradation of RhB under visible-light irradiation.

Fig. S7 (a) UV–vis absorption spectra and (b) the corresponding Kubelka–Munk transformed reflectance spectra of $mm-C_3N_4$, TiO₂ and mm-CNT-300-4.3.

Fig. S8 The generation rate of photo-induced carriers in x-z plane (a) TiO_2 particles are placed inside the pores of mm-C₃N₄, (b) pure mm-C₃N₄, (c) and (d) are partial enlargement of (a) and (b), respectively.

Fig. S9 Electric field intensity distribution in x-y plane when the diameter of the TiO_2 particles are (a) d=10 nm, (b) d=12 nm, (c) d=14 nm, (d) d=16 nm.

200202020Fig. S10 Optical absorption intensity distribution in x-y plane when the diameter of the TiO2
particles are (a) d=10 nm, (b) d=12 nm, (c) d=14 nm, (d) d=16 nm.

Fig. S11 Electric field intensity distribution in x-y plane (a) TiO_2 particles are stretched in the y direction, (b) TiO_2 particles are kept to be a regular sphere, (c) TiO_2 particles are stretched in the x direction.

Fig. S12 Electric field intensity distribution in x-y plane (a) TiO_2 particles are stretched in the y direction, (b) TiO_2 particles are kept to be a regular sphere, (c) TiO_2 particles are stretched in the x direction.