Supplementary Information

In-situ synthesized SnSe nanorods in SnO_x@CNFs membrane toward highperformance freestanding and binder-free lithium-ion batteries

Haocheng Yuan, ^a Yuqiang Jin, ^a Jinle Lan, ^{a, *} Yuan Liu, ^b Yunhua Yu, ^{a, *}and

Xiaoping Yang^a

a State Key Laboratory of Organic-Inorganic Composites, College of Materials

Science and Engineering, Beijing University of Chemical Technology, Beijing 100029,

China.

b State Key Lab of New Ceramics and Fine Processing, School of Materials

Science and Engineering, Tsinghua University, Beijing 100084, China.

Corresponding author: lanjl@mail.buct.edu.cn, yuyh@ mail.buct.edu.cn.

Fig. S1 Photograph of polymer precursor solution with different SeO_2 addition

Fig. S2 SEM images of (a-c) $SnO_x@CNFs$, (b-f) 10-SnSe/SnO_x@CNFs, (h-i) 20-

SnSe/SnO_x@CNFs and (j-l) 30-SnSe/SnO_x@CNFs.

Fig. S3 EDS spectrum of (a)SnO_x@CNFs, (b)10-SnSe/SnO_x@CNFs, (c)20-SnSe/SnO_x@CNFs and (d)30-SnSe/SnO_x@CNFs

Table S1	The atomic	: percent	of C,	N, O,	Sn,	Se and	The	atomic	ratio	of Se t	to Sn	ı in
different s	samples											

	C (%)	N (%)	O (%)	Sn (%)	Se (%)	Se/Sn
SnO _x @CNFs	66.83	10.91	17.02	5.24		
10-SnSe/SnO _x @CNFs	62.87	7.83	20.03	8.18	1.09	0.13
20-SnSe/SnO _x @CNFs	66.20	3.66	20.69	7.40	2.06	0.27
30-SnSe/SnO _x @CNFs	61.14	10.87	18.89	6.77	2.33	0.34

Fig. S4 TEM images of (a-c)10-SnSe/SnO_x@CNFs, (b-f) 20-SnSe/SnO_x@CNFs and (h-g) 30-SnSe/SnO_x@CNFs at different positions.

Fig. S5 The charge capacity comparison for $SnO_x@CNFs$ and 20-SnSe/SnO_x@CNFs in 1.0 V - 2.0 V at 50th cycle.

	Thielmoor	Areal	Areal	Volumetric capacity	
Materials		loading	capacity		
	(μπ)	$(mg cm^{-2})$	$(mAh cm^{-2})$	$(mAh cm^{-3})$	
SnO _x @CNFs	8	0.57	0.28	348	
10-SnSe/SnO _x @CNFs	15	0.80	0.54	360	
20-SnSe/SnO _x @CNFs	27	1.73	1.28	474	
30-SnSe/SnO _x @CNFs	30	1.87	1.22	407	

 Table S2 calculated specific capacity of all samples

Fig. S7 optical photograph of 20-SnSe/SnO_x@CNFs electrode after 100 cycles

Fig. S8 TEM image of 20-SnSe/SnO_x@CNFs before (a) and after (b) 100 cycles at 1 A g^{-1} .

Fig. S9 (a) EIS and fitting line for of $SnO_x@CNFs$ and $20-SnSe/SnO_x@CNFs$. (b) The equivalent circuits used to fit the Nyquist plots.