Supporting Information

Electrospun Nb-doped LiNi_{0.4}Co_{0.2}Mn_{0.4}O₂ nanobelts for lithium-ion battery

Congjie Lv, Yi Peng, Jing Yang, Xiaochuan Duan, * Jianmin Ma, * and Taihong Wang

S1. Results and Discussion

Figure S1. (a) Low-magnification SEM image, and (b) high-magnification SEM image of the as-electrospun PAN/metal acetates nanofibres.

Figure S2. (a) Low-magnification SEM image, and (b) high-magnification SEM image of the nanoparticles obtained by directly sintering the PAN/metal acetates nanofibres to 750 °C.

Figure S3. TGA-DTGA curves of the electrospun PAN/NCM composite nanofibres.

Figure S4. TGA curves of the electrospun PAN/NCM composite precursor, PAN and metal acetates.

Figure S4. XRD patterns of the samples obtained at different temperatures.

Figure S5. The wide XPS spectra of (a) NCM nanobelts, and (b) Nb-NCM nanobelts.

Figure S6. Discharge curves of Nb-NCM and NCM electrodes at 1 C.

Figure S7. Nitrogen adsorption/desorption isotherms and the corresponding pore size distribution for the Nb-NCM nanobelts.

Figure S8. The simplified equivalent circuit of the Nb-NCM nanobelts and NCM nanobelts.

Table S1. The measured elemental content of Nb-NCM nanobelts by EDS.

	Ni	Со	Mn	Nb
1	0.547	0.270	0.420	0.016
2	0.539	0.278	0.456	0.023
3	0.545	0.272	0.455	0.023
4	0.559	0.270	0.449	0.022
5	0.552	0.277	0.421	0.015
6	0.528	0.235	0.432	0.018
7	0.459	0.226	0.480	0.022

8	0.573	0.244	0.483	0.019
9	0.577	0.262	0.449	0.018
10	0.556	0.229	0.455	0.021
AVG	0.5435	0.2563	0.45	0.0197
Atom%	42.8%	20.2%	35.4%	1.6%

Table S2. Crystal lattice parameters of Nb-NCM and NCM samples.

Samples	NCM	Nb-NCM	
a (Å)	2.87331(15)	2.88152(12)	
b (Å)	2.87331(15)	2.88152(12)	
c (Å)	14.2672(16)	14.3103(15)	
V (Å)	102.008(14)	102.902(12)	
α	90	90	
β	90	90	
γ	120	120	
R _p (%)	4.80	6.53	
R _{wp} (%)	6.12	5.20	

Table S3. The fitting values of the resistance components in the simplified equivalent circuit.

Components	R_{Ω}/Ω	R_{ct}/Ω	R_{total}/Ω
Nb-NCM nanobelts	4.5	136.0	140.5
NCM nanobelts	5.9	242.1	248.0

Table S4. Summary of the preparation and electrochemical performance of NCM microstructures with different morphologies.

Ref.	Structure	Synthesis	Voltage	Capicity (mAh g ⁻¹)	Cycling Performance
1	1D nanobar-like LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂	A precipitation process followed by a calcination step	3.0-4.3 V	177.1 (0.1 C)	161 (100 th)
				152.8 (1 C) 141.7 (2 C) 122.7 (5 C)	
2	LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ spherical particles (5– $20 \mu m$)	Co-precipitation method	3.3-4.35 V	120 (1 C) 100 (2 C) 65 (5 C)	
3	LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂	Solid-state synthesis route	2.5-4.5 V	145 (0.1 C)	108 mAh g ⁻¹ (45 th)
4	LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂	_	2.75- 4.35 V	164.8 (0.1 C)	94.5 mAh g ⁻¹ (70 th)
5	Al ₂ O ₃ coated LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ particles	High-temperature solid-state heating and atomic layer deposition	2.5-4.5 V	145 (1 C) 130 (2 C) 105 (5 C)	
	LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ microspheres	Soft-chemical method	2.5–4.4 V	142 (0.1 C)	119 mAh g ⁻¹ (20 th)
6	LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ microspheres	Citric acid-assisted soft-chemical method	2.5–4.4 V	150 (0.1 C)	135 mAh g ⁻¹ (20 th)
	LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ microspheres	Oxalic acid- assisted soft- chemical method	2.5–4.4 V	156 (0.1 C)	145 mAh g ⁻¹ (20 th)
7	Bi ₂ O ₃ coated LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ particles (~200 nm)	Adopting surfactant co-assisted sol–gel synthesis approach	2.5-4.5 V	160 (1 C) 120 (3C)	
8	LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂	Co-precipitation	28111	162 (0.1 C) 105 (1 C)	
	MgO coated LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂	method	2.0- 1 . 1 V	166.6 (0.1 C) 110 (1 C)	_
9	LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ with SWNTs	Mixed-hydroxide method	2.5-4.5 V	147 (1 C) 140 (2 C)	

10	Li _{1.02} Ni _{0.4} Mn _{0.4} Co _{0.2} O ₂ particles (100-400 nm)	Sol-Gel process- ball-milled	2.5-4.3 V	167 (0.1 C) 157 (1 C) 144 (5 C)	
				133 (8 C)	115.7 mAh g ⁻¹ (50 th)
11	$LiNi_{0.15}Co_{0.15}Fe_{0.05}Mn$	Glycine nitrate	2.0-4.7 V	175 (0.1 mA/cm ²)	119 mAh g ⁻¹ (20 th)
11	nm)	combustion method	2.0-4.3 V	145 (0.1 mA/cm ²)	
12	LiNi _{0.15} Co _{0.15} Al _{0.05} Mn _{0.4} O ₂ particles (30-80 nm)	Glycine nitrate combustion process	2.0-4.3 V	162 (0.1 mA/cm ²)	155 mAh g ⁻¹ (20 th)
			2.8-4.3 V	147 (0.1 C)	146 mAh g ⁻¹ (30 th)
13	Li ₂ ZrO ₃ -coated LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂ particles (~1µm)	A (Ni _{0.4} Co _{0.2} Mn _{0.4}) (OH) ₂ precursor route	2.8-4.5 V	177.7 (0.1 C) 168.6 (0.5 C)	
14	LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂	Mixed-hydroxide method	3.0-4.2 V	145.6 (90 mA g ⁻¹)	131 mAh g ⁻¹ (60 th)
This	Nb doped LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂ nanobelts	Electrospinning method		203.2 (0.1 C)	
			2.7-4.6 V	173.2 (1	148.9 mAh g ⁻¹
				C)	(100 th)
WUIK				C)	(200 th)
				153.0 (5	109.6 mAh g ⁻¹
				C)	(200 th)

References

[1] Chen, Z., Chao, D., Liu, J., Copley, M., Lin, J., Shen, Z., Passerini, S., 1D nanobar-like $LiNi_{0.4}Co_{0.2}Mn_{0.4}O_2$ as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability. *Journal of Materials Chemistry A*, 2017, 5(30), 15669-15675.

[2] Cui, S., Wei, Y., Liu, T., Deng, W., Hu, Z., Su, Y., Wang, W., Optimized Temperature Effect of Li-Ion Diffusion with Layer Distance in Li(Ni_xMn_yCo_z)O₂ Cathode Materials for High Performance Li-Ion Battery. *Advanced Energy Materials.* 2016, 6(4), 1501309.
[3] Tan, T. Q., Idris, M. S., Osman, R. A. M., Reddy, M. V., Chowdari, B. V. R., Structure and electrochemical behaviour of LiNi_{0.4}Mn_{0.4}Co_{0.2}O₂ as cathode material for lithium ion batteries. *Solid State Ionics*, 2015, 278, 43-48.

[4] Rong, H., Xu, M., Xie, B., Huang, W., Liao, X., Xing, L., Li, W., Performance improvement of graphite/LiNi_{0.4}Co_{0.2}Mn_{0.4}O₂ battery at high voltage with added Tris(trimethylsilyl) phosphate. *Journal of Power Sources*, 2015, 274, 1155-1161.
[5] Wise, A. M., Ban, C., Weker, J. N., Misra, S., Cavanagh, A. S., Wu, Z., Toney, M. F., Effect of Al₂O₃ coating on stabilizing LiNi_{0.4}Mn_{0.4}Co_{0.2}O₂ cathodes. *Chemistry of Materials*, 2015, 27(17), 6146-6154.

[6] Channu, V. R., Ravichandran, D., Rambabu, B., Holze, R., Nanocrystalline LiNi_{0.4}Mn_{0.4}Co_{0.2}O₂ cathode for lithium-ion batteries. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2014, 453, 125-131.

[7] Bhuvaneswari, D., Babu, G., Kalaiselvi, N., Effect of surface modifiers in improving the electrochemical behavior of LiNi_{0.4}Mn_{0.4}Co_{0.2}O₂ cathode. *Electrochimica Acta*, 2013, 109, 684-693.

[8] Han, E., Liu, X., Zhu, L., Pan, C., Wu, Z., Improvement of electrochemical properties of MgO-coated LiNi_{0.4}Co_{0.2}Mn_{0.4}O₂ cathode materials for lithium ion batteries. *Ionics*, 2013, 19(7), 997-1003.

[9] Ban, C., Wu, Z., Kirkham, M. J., Chen, L., Jung, Y. S., Payzant, E. A., Dillon, A. C., Extremely Durable High-Rate Capability of a LiNi_{0.4}Mn_{0.4}Co_{0.2}O₂ Cathode Enabled with Single-Walled Carbon Nanotubes. *Advanced Energy Materials*, 2011, 1(1), 58-62.

[10] Santhanam, R., Ghatty, S. L., Rambabu, B., Effect of Ball Milling on the

Electrochemical Performance of Li_{1.02}Ni_{0.4}Co_{0.2}Mn_{0.4}O₂ Cathode Synthesized by Citric Acid-Assisted Sol-Gel Process. *Int. J. Electrochem. Sci*, 2010, 5, 189-199.

[11] Wilcox, J. D., Rodriguez, E. E., Doeff, M. M., The Impact of Aluminum and Iron Substitution on the Structure and Electrochemistry of Li(Ni_{0.4}Co_{0.2-y}M_yMn_{0.4})O₂ Materials. *Journal of The Electrochemical Society*, 2009, 156(12), A1011-A1018.

[12] Wilcox, J., Doeff, M., Characterization and Electrochemical Performance of Substituted $LiNi_{0.4}Co_{0.2-y}Al_yMn_{0.4}O_2$ ($0 \ge y \le 0.2$) Cathode Materials. *ECS Transactions*, 2008, 11(29), 27-33.

[13] Ni, J., Zhou, H., Chen, J., Zhang, X., Improved electrochemical performance of layered LiNi_{0.4}Co_{0.2}Mn_{0.4}O₂ via Li₂ZrO₃ coating. *Electrochimica Acta*, 2008, 53(7), 3075-3083.
[14] Li, J., Zheng, J. M., Yang, Y., Studies on storage characteristics of LiNi_{0.4}Co_{0.2}Mn_{0.4}O₂ as cathode materials in lithium-ion batteries. *Journal of The Electrochemical Society*, 2007, 154(5), A427-A432.