Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supplemental information

March 6, 2018

compound	ref	compound	ref	compound	ref
$BaCd_2As_2$	[1, 2]	$CaZn_2Sb_2$	[3]	$SrMg_2Bi_2$	[4]
$BaCd_2P_2$	[1, 2]	$EuCd_2As_2$	[5]	$\mathrm{SrMg}_2\mathrm{N}_2^*$	[6]
$BaCd_2Sb_2$	[7]	$EuCd_2P_2$	[8]	$SrMg_2Sb_2$	[4]
$BaMg_2As_2$	[1, 4]	$EuCd_2Sb_2$	[8]	$\mathrm{SrMn}_2\mathrm{As}_2$	[9, 10]
$BaMg_2Bi_2$	[4]	$EuMg_2Bi_2$	[11]	$\mathrm{SrMn}_2\mathrm{P}_2$	[9]
$BaMg_2P_2$	[1]	$EuMg_2Sb_2$	[12]	$\mathrm{SrMn}_2\mathrm{Sb}_2$	[13]
$BaMg_2Sb_2$	[4]	$EuMn_2As_2$	[14]	$SrZn_2As_2$	[15]
$CaCd_2As_2$	[16]	$\mathrm{EuMn_2P_2}$	[14]	$\mathrm{SrZn}_2\mathrm{P}_2$	[1], [2]
$CaCd_2P_2$	[16]	$EuMn_2Sb_2$	[14, 5]	$\mathrm{SrZn}_2\mathrm{Sb}_2$	[3]
$CaCd_2Sb_2$	[3]	$EuZn_2As_2$	[2]	$YbCd_2Sb_2$	[17, 8]
$CaMg_2As_2$	[4]	$EuZn_2P_2$	[2]	$YbMg_2Bi_2$	[11]
$CaMg_2Bi_2$	[4, 11]	$EuZn_2Sb_2$	[5, 2]	$YbMg_2Sb_2$	[12]
$CaMg_2N_2^*$	[6]	$Mg(MgMn)_2As_2$	[18]	$YbMn_2As_2$	[14]
$CaMg_2Sb_2$	[4]	$MgMg_2As_2$	[18]	$YbMn_2Sb_2$	[5, 19]
$CaMn_2As_2$	[9, 10]	$MgMg_2Bi_2$	[20]	$YbZn_2As_2$	[2, 21]
$CaMn_2Bi_2$	[13]	$MgMg_2Sb_2$	[20, 22]	$YbZn_2P_2$	[1, 23]
$CaMn_2P_2$	[9]	$SrCd_2As_2$	[15]	$YbZn_2Sb_2$	[2, 5, 17]
$CaMn_2Sb_2$	[13]	$\mathrm{SrCd}_2\mathrm{P}_2$	[1], [2]	$\mathrm{SmMg}_{2}\mathrm{Bi}_{2}$	[24]
$CaZn_2As_2$	[16]	$\mathrm{SrCd}_2\mathrm{Sb}_2$	[3]	$\mathrm{SmMg}_2\mathrm{Sb}_2$	[24]
$CaZn_2P_2$	[16]	$SrMg_2As_2$	[4]		
compound	ref	compound	ref	compound	ref
$CaAl_2Ge_2$	[25]	$MgAl_2Ge_2$	[26]	$YbAl_2Ge_2$	[27]
$CaAl_2Si_2$	[25]	$MgAl_2Si_2$	[28]	$YbAl_2Si_2$	[27]
$EuAl_2Ge_2$	[29]	$SrAl_2Ge_2$	[25]		
$EuAl_2Si_2$	[30], [27]	$SrAl_2Si_2$	[25]		
compound	ref	compound	ref	compound	ref
CeAgZnAs ₂	[31]	$LaAgZnP_2$	[32]	$SmAgZnAs_2$	[31]
$CeAgZnP_2$	[31]	$LaCuZnP_2$	[32]	$SmAgZnP_2$	[32]
$CeCuZnAs_2$	[31]	$LuCuZnP_2$	[33]	$SmCuZnAs_2$	[31]
$CeCuZnP_2$	[32]	$NdAgZnAs_2$	[31]	$SmCuZnP_2$	[32]
$DyCuZnAs_2$	[31]	$NdAgZnP_2$	[31]	$TbAgZnAs_2$	[31]
$DyCuZnP_2$	[33]	$NdCuZnAs_2$	[31]	$TbCuZnAs_2$	[31]
$ErCuZnP_2$	[33]	$NdCuZnP_2$	[33]	$TbCuZnP_2$	[33]
$GdAgZnAs_2$	[31]	$PrAgZnAs_2$	[31]	$TmCuZnP_2$	[33]
$GdCuZnP_2$	[33]	$PrAgZnP_2$	[31]	$YbCuZnP_2$	[34]
$HoCuZnP_2$	[33]	$PrCuZnP_2$	[33]	$YbMnCuP_2$	[15]
$LaAgZnAs_2$	[31]	$ScCuZnP_2$	[32]	$YCuZnP_2$	[32, 2]

Table 1: Compounds with the ${\rm CaAl_2Si_2}$ structure type.

compound	ref	compound	ref	compound	ref
$CeLi_2As_2$	[35]	LaLi ₃ P ₂	[36]	$\mathrm{PrLi}_{x}\mathrm{Cu}_{2-y}\mathrm{P}_{2}^{*}$	[37]
$CeLi_3Bi_2$	[38]	$LaLi_3Sb2$	[36]	${ m SmLi}_{3}{ m Bi}_{2}$	[38]
$CeLi_3Sb_2$	[39]	$LaLixCu_{2-y}P_2^*$	[37]	${ m SmLi}_3{ m Sb}_2$	[39]
$DyLi_3Sb_2$	[39]	$MdLixCu_{2-y}P_2^*$	[37]	$\mathrm{TbLi}_3\mathrm{Bi}_2$	[38]
$\mathrm{ErLixCu}_{2-y}\mathrm{P}_2^*$	[37]	$NdLi_3As_2$	[36]	$\mathrm{TbLi}_3\mathrm{Sb}_2$	[39]
$GdLi_3Bi_2$	[38]	$NdLi_3Bi_2$	[38]	$\mathrm{YLi}_3\mathrm{Bi}_2$	[36]
$GdLixCu_{2-y}P_2^*$	[37]	$NdLi_3Sb_2$	[39]	$\mathrm{YLi}_3\mathrm{Sb}_2$	[36]
$HoLi_3Sb_2$	[39]	$PrLi_{3}Bi_{2}$	[38]		
$LaLi_3Bi_2$	[38]	$PrLi_3Sb_2$	[39]		
compound	ref	compound	ref	compound	ref
$NaCd_{1.5}Sn0.5As_2$	[40]	$NaZn_{1.5}Sn0.5As_2$	[40]	$RbCd_{1.5}Sn0.5As2$	[40]
$NaZn_{1.5}Ge0.5As_2$	[40]	$KZn_{1.5}Sn0.5As_2$	[40]		
$NaZn_{1.5}Si0.5As_2$	[40]	$KCd_{1.5}Sn0.5As_2$	[40]		
compound	ref	compound	ref	compound	ref
$NaFe_{1.6}S_2$	[41]				
compound	ref	compound	ref	compound	ref
$CeAl_2Ge_2$	[42, 43]	$LuAl_2Ge_2$	[44]	$\mathrm{TbAl}_{2}\mathrm{Si}_{2}$	[45]
$DyAl_2Si_2$	[45]	$NdAl_2Ge_2$	[44]	YAl_2Ge_2	[46, 44]
$GdAl_2Ge_2$	[44]	$PrAl_2Si_2$	[47]	YAl_2Si_2	[46, 45]
$GdAl_2Si_2$	[48]	$\rm SmAl_2Si_2$	[45]		
$LaAl_2Ge_2$	[42, 44]	$\mathrm{TbAl}_{2}\mathrm{Ge}_{2}$	[44]		
$GdAlZnGe_2$	[45]				

Table 2: Compounds with the $CaAl_2Si_2$ structure type, continued. Compounds with * are not included in phase map in figure 3(d).

Table 3: Compounds with VEC=16 forming the $\rm ThCr_2Si_2$ structure type.

compound	ref	compound	ref	compound	ref
$BaMn_2As_2$	[10]	$BaPd_2As_2$	[49]	$KZn_{1.5}Si_{0.5}As_2$	[50]
$BaMn_2Bi_2$	[51]	$\mathrm{BaZn}_2\mathrm{P}_2$	[52]	$RbZn_{1.5}Ge_{0.5}As_2$	[50]
$BaMn_2P_2$	[9]	KFe_2AsSe	[53]		
$BaMn_2Sb_2$	[7]	$KZn_{1.5}Ge_{0.5}As_2$	[50]		

Table 4: Compounds with VEC=16 forming the $BaCu_2S_2$ structure type.

compound	ref	compound	ref	compound	ref
$BaAl_2Si_2$	[54]	α -BaCu ₂ S ₂	[55]	$BaAl_2Ge_2$	[56]
$BaZn_2As_2$	[52]	α -BaCu ₂ Se ₂	[55]		
$BaZn_2Sb_2$	[7]	α -BaCu ₂ Te ₂	[57]		

Table 5: Source data for Figure 8b) and Figure 9. The room temperature Seebeck coefficients, α , electrical conductivity, σ , Hall mobility, μ_H , and total thermal conductivity as κ_{total} , are obtained from the literature. The Lorenz numbers, L, are estimated using an effective mass model. The electronic thermal conductivity, κ_e , and lattice thermal conductivity, κ_L , are calculated from the Wiedemann–Franz law using the corresponding σ . The transverse and longitudinal speed of sound (v_t and v_l) are from the predicted elastic modulus [58] and density. The mean speed of sound, v_s calc, is obtained through $(2v_t+v_l)/3$.

Ref.	Compound	α	$L \times 10^8$	σ	κ_e	κ_{total}	κ_L	v_s calc.	μ_H
		$\mu V K^{-1}$	$W\Omega K^{-2}$	S/m	W/(mK)	W/(mK)	W/(mK)	m/s	$cm^2/(Vs)$
[59]	Mg_3Sb_2	193	1.58	2.11×10^{2}	9.8×10^{-4}	1.33	1.3	2790	
[<mark>60</mark>]	$YbCd_2Sb_2$	115	1.75	4.56×10^{4}	2.40×10^{-1}	2.04	1.80	2160	73
	$CaCd_2Sb_2$	261	1.55	$2.50{ imes}10^2$	1.16×10^{-3}	1.06	1.06	2381	
[<mark>61</mark>]	$YbZn_2Sb_2$	48	2.3	$3.13{ imes}10^5$	2.16	4.25	2.09	2379	130
	$CaZn_2Sb_2$	120	1.81	4.22×10^{4}	2.29×10^{-1}	2.60	2.37	2480	83
[62]	$YbCd_2Sb_2$	124	1.82	$4.90{ imes}10^4$	2.68×10^{-1}	2.25	1.99	2117	72
	$YbCd_{1.95}Mn_{0.25}Sb_2$	138	1.75	4.25×10^{3}	2.23×10^{-2}	1.95	1.93	2117	73
	$YbMn_2Sb_2$	10	2.4	6.25×10^{3}	4.50×10^{-2}	2.75	2.71	2055	
[63]	$CaZn_2Sb_2$	115	1.75	8.00×10^4	4.20×10^{-1}	2.91	2.49	2480	
	$YbZn_2Sb_2$	100	1.9	1.33×10^{5}	7.58×10^{-1}	2.60	1.84	2379	
[64]	$EuMg_2Bi_2$	102	1.9	9.35×10^{4}	5.33×10^{-1}	4.72	4.19	2228	
	$CaMg_2Bi_2$	288	1.54	5.30×10^{3}	2.45×10^{-2}	2.93	2.91	2486	143
	$YbMg_2Bi_2$	209	1.6	1.33×10^{4}	6.38×10^{-2}	2.68	2.62	2133	119
[65]	$SrZn_2Sb_2$	159	1.69	2.22×10^{4}	1.13×10^{-1}	2.05	1.94	2366	
	$CaZn_2Sb_2$	120	1.81	$4.22{ imes}10^4$	2.29×10^{-1}	2.60	2.37	2480	
	$YbZn_2Sb_2$	48	2.3	3.13×10^{5}	2.16	4.25	2.09	2379	
	$EuZn_2Sb_2$	120	1.81	$1.14{ imes}10^5$	6.17×10^{-1}	2.50	1.88	2401	
[<mark>66</mark>]	$YbCd_2Sb_2$	118	1.75	4.60×10^{4}	2.42×10^{-1}	2.10	1.86	2160	73
	$YbZn_2Sb_2$	45	2.2	2.16×10^{5}	1.43	3.80	2.37	2379	119
[67]	$CaZn_2Sb_2$	120	1.81	$3.20{ imes}10^4$	1.74×10^{-1}	3.89	3.72	2480	63.6
[68]	$YbZn_2Sb_2$	53	2.19	1.58×10^{5}	1.04	3.23	2.20	2379	85
[<mark>69</mark>]	$EuZn_2Sb_2$	120	1.81	1.13×10^{4}	6.14×10^{-2}	2.62	2.56	2401	
[70]	$EuCd_2Sb_2$	229	1.58	$1.11{ imes}10^4$	5.26×10^{-2}	1.40	1.35	2133	
[71]	$EuCd_2Sb_2$	222	1.59	1.16×10^{4}	5.53×10^{-2}	1.40	1.35	2133	
	$CaCd_2Sb_2$	262	1.55	6.67×10^{4}	3.10×10^{-1}	1.06	0.75	2381	
[72]	$SrZn_2Sb_2$	167	1.69	3.50×10^{3}	1.77×10^{-2}	2.20	2.18	2366	
[73]	$YbCd_2Sb_2$	169	1.69	3.30×10^4	1.67×10^{-1}	2.08	1.91	2160	
[74]	$YbZn_2Sb_2$	58	2.16	2.10×10^{5}	1.36	4.13	2.76	2379	
	$\mathrm{La}_{0.01}\mathrm{Yb}_{0.99}\mathrm{Zn}_{2}\mathrm{Sb}_{2}$	63	2.14	1.67×10^{5}	1.07	3.50	2.43	2379	
[75]	$YbZn_2Sb_2$	130	1.52	4.55×10^{4}	2.07×10^{-1}	2.90	2.69	2379	115
	$Yb_{0.99}Zn_2Sb_2$	65	2.14	1.67×10^{5}	1.07	2.40	1.33	2379	90
[76]	Mg_3Sb_2	313	1.5	9.52×10^{2}	4.29×10^{-3}	1.40	1.40	2790	28.3
	$Mg_{2.995}Ag_{0.005}Sb_2$	162	1.68	1.22×10^{4}	6.15×10^{-2}	1.45	1.39	2790	50.1
	$Mg_{2.990}Ag_{0.010}Sb_2$	177	1.65	1.04×10^{4}	5.16×10^{-2}	1.35	1.30	2790	47.6
	$Mg_{2.985}Ag_{0.015}Sb_2$	177	1.65	1.18×10^{4}	5.82×10^{-2}	1.25	1.19	2790	47.3
	$Mg_{2.980}Ag_{0.020}Sb_2$	165	1.68	1.03×10^{4}	5.20×10^{-2}	1.30	1.24	2790	48.9
[77]	Mg_3Sb_2	1000	1.5	1.00	4.50×10^{-6}	1.40	1.35	2790	23.2
	$Mg_{2.994}Na_{0.006}Sb_2$	110	1.9	1.04×10^{4}	5.94×10^{-2}	1.60	1.60	2790	16.7
	$Mg_{0.975}Na_{0.0125}Sb_2$	100	1.9	2.08×10^{4}	1.19×10^{-1}	1.70	1.64	2790	15.9
[78]	$CaMg_2Sb_2$						4.55	3207	

Compound [Bef]	$n_{II} \times 10^{-19}$	α	11.11	Compound [Bef]	$n_{II} \times 10^{19}$	α	11.11
Compound [reci.]	$carriers/cm^3$	$\mu V K^{-1}$	$cm^2/(Vs)$	compound [itel.]	$carriers/cm^3$	$\mu V K^{-1}$	$cm^2/(Vs)$
VhZna Mn Sha [68]		μ, Π		Vbr Ca CdoSbo [60]		μ, π	
102112 = x 1011x 502 [00]	11.5	51	85	101 = x 0 a x 0 0 2002 [00]	3.0	115	73
0.05	0	01	EC	0	0.0	100	20
0.05	9	60	00	0.2	2.00	120	02
0.1	7.2	69	88	0.4	1.88	149	104
0.15	8.3	924	59	0.5	1.94	149	91
0.2	6.6	64	38	0.6	1.12	161	135
0.3	6	87	54	0.8	0.33	216	114
$\operatorname{Ca}_{1-x}\operatorname{Eu}_{x}\operatorname{Zn}_{2}\operatorname{Sb}_{2}$ [67]				$Yb_{1-x}Zn_2Sb_2$ [75]			
0	3.04	120	63.6	0.98	2.38	131	120
0.1	3.29	112	117.4	0.99	2.04	121	115
0.3	3.59	110	120.8	1	3.09	118	90
0.7	3.81	111	123.6	1.025	9.06	62	75
0.9	3.83	111	140	1.05	15	40	92
1	2.94	112	186.2	1.00	10	10	
1	2.01	112	100.2	(Euo rVbo r)			
				$C_{2} M_{r_{2}}B_{r_{2}} [64]$			
VbCda Zn Sha [66]				0	3.00	105	200
10002 = x211x302 [00]	2.0	110	79	0	0.74	100	100
0	3.9	110	13	0.4	2.74	120	180
0.4	6	101	118	0.5	2.26	148	166
0.8	7.2	68	93	0.6	1.7	162	171
1	8.6	66	103	0.7	1.41	172	164
1.2	9.1	55	104	$EuMg_2Bi_2$	4.33	102	202
1.6	10.3	40	123	$Eu_{0.5}Ca_{0.5}Mg_2Bi_2$	3.07	128	159
2	11.4	45	119				
				$Mg_3Sb_{2-x}Bi_x$ [59]			
$Ca_{1-r}Na_rMg_2Bi_{1.98}$ [79]				0	11	192	30
0	0.35	256	138	0.1	19	275	25
0.0025	1.84	160	144	0.15	23	310	22.2
0.005	2.53	138	147	0.2	20	305	18.6
0.003	2.00	102	154	0.2	49	227	12.0
0.0075	4.4	105	104	0.25	42	237	13.9
Co. Vb. Mr. D: [90]				0.4	100	141	30.9
$Ca_{1-x} I D_x Mg_2 Dl_2 [00]$	0.94	000	149	Mar An Ch [76]			
0	0.24	200	145	$\operatorname{Mg}_{3-x}\operatorname{Ag}_x\operatorname{SD}_2[70]$	0.10	010	20.0
0.3	0.28	263	153	0	0.18	316	28.3
0.5	0.34	260	138	0.05	1.52	163	50.1
0.7	0.42	247	131	0.02	1.36	167	47.6
1	0.72	210	119	0.025	1.27	174	47.3
				0.01	1.23	175	48.9
$YbCd_{2-x}Mn_xSb_2$ [62]				0.015	1.5	178	43.7
0	4.3	125	72				
0.05	3.6	139	73	$Mg_{3-x}Na_xSb_2$ [77]			
0.1	2.8	135	63	0.006	3.87	117	16.7
0.15	2.2	162	64	0.02	1.36	167	47.6
0.2	2.1	161	74	0.0125	8 41	89	15.9
0.2	17	181	54	0.025	17.1	73	12.6
	11	192	53	0.015	15	177	43.7
0.0	1.1	192	00	0.015	1.0	111	40.7
CarYb1 zZnoSbo [61]							
	15	48	130				
0.25	89	58	72				
0.20	6.0	70	76				
0.5	57	19	50				
0.70	0.1 9.1	90	90 99				
L 1	3.1	120	0 0				

Table 6: Source data for figure 8a). Hall carrier concentration, n_H , Seebeck coefficient, α , and Hall mobility, μ_H , for *p*-type AM_2X_2 compounds.

Table 7: Hall carrier concentration, Seebeck coefficient and Hall mobility for all *n*-type AM_2X_2 compounds. Source data for figure 7(b) in the paper. Here, we define Hall carrier concentration as n_H , Seebeck coefficient as α , Hall mobility as μ_H .

Compound [Ref.]	$n_H \times 10^{-19}$	α	n_H
	$\operatorname{carriers}/\operatorname{cm}^3$	$\mu_H V K^{-1}$	$cm^2/(Vs)$
$Mg_{3.07}Sb_{1.5}Bi_{0.5-x}Se_x$ [81]			
0.02	0.88	276	76
0.03	0.70	280	64
0.04	0.68	281	63
0.05	0.77	279	60
0.06	0.64	296	61
$Mg_3Sb_{1.5-0.5x}Bi_{0.5-0.5x}Te_x$ [82]			
0.04	2.21	208	
0.05	2.17	214	
0.08	2.06	221	
0.2	1.81	227	

References

- [1] P. Klüfers and A. Mewis Z. Kristallogr. Cryst. Mater, vol. 169, no. 1-4, pp. 135–148, 1984.
- [2] P. Klüfers, H. Neumann, A. Mewis, and H.-U. Schuster Z. Naturforsch. B Chem. Sci., vol. 35, no. 10, pp. 1317–1318, 1980.
- [3] A. Mewis Z. Naturforsch. B, vol. 33, no. 4, pp. 382–384, 1978.
- [4] K. Deller and B. Eisenmann Z. Naturforsch. B Chem. Sci., vol. 32, no. 6, pp. 612–616, 1977.
- [5] I. Schellenberg, M. Eul, W. Hermes, and R. Pöttgen Z. Anorg. Allg. Chem, vol. 636, no. 1, pp. 85–93, 2010.
- [6] O. Reckeweg and F. J. DiSalvo Z. Anorg. Allg. Chem, vol. 627, no. 3, pp. 371–377, 2001.
- [7] E. Brechtel, G. Cordier, and H. Schäfer Z. Naturforsch. B, vol. 34, no. 7, pp. 921–925, 1979.
- [8] A. Artmann, A. Mewis, M. Roepke, and G. Michels Z. Anorg. Allg. Chem, vol. 622, no. 4, pp. 679–682, 1996.
- [9] A. Mewis Z. Naturforsch. B, vol. 33, no. 6, pp. 606–609, 1978.
- [10] E. Brechtel, G. Cordier, and H. Schäfer Z. Naturforsch. B, vol. 33, no. 7, pp. 820–822, 1978.
- [11] A. F. May, M. A. McGuire, D. J. Singh, R. Custelcean, and G. E. Jellison Jr Inorg. Chem., vol. 50, no. 21, pp. 11127–11133, 2011.
- [12] F. Wartenberg, C. Kranenberg, R. Pocha, D. Johrendt, A. Mewis, R.-D. Hoffmann, B. D. Mosel, and R. Poettgen Z. Naturforsch. B Chem. Sci., vol. 57, no. 11, pp. 1270–1276, 2002.
- [13] G. Cordier and H. Schäfer Z. Naturforsch. B Chem. Sci., vol. 31, no. 11, pp. 1459–1461, 1976.
- [14] R. Rühl and W. Jeitschko Materials Research Bulletin, vol. 14, no. 4, pp. 513–517, 1979.
- [15] A. Mewis Z. Naturforsch. Teil B, Anorg. Chem., vol. 35, no. 1-4, pp. 939–941, 1980.
- [16] P. Klüfers and A. Mewis Z. Naturforsch. B, vol. 33, no. 2, pp. 151–155, 1978.
- [17] O. Y. Zelinska, A. Tkachuk, A. Grosvenor, and A. Mar Chem. of metals and alloys, no. 1, 2, pp. 204–209, 2008.
- [18] R. Juza and R. Kroebel Z. Anorg. Allg. Chem, vol. 331, no. 3-4, pp. 187–199, 1964.
- [19] A. Morozkin, O. Isnard, P. Henry, S. Granovsky, R. Nirmala, and P. Manfrinetti J. Alloys Compd., vol. 420, no. 1, pp. 34–36, 2006.
- [20] E. Zintl and E. Husemann Z. Phys. Chem., vol. 21, no. 1, pp. 138–155, 1933.
- [21] A. Nateprov, J. Cisowski, J. Heimann, and I. Mirebeau J. Alloys Compd., vol. 290, no. 1, pp. 6–9, 1999.
- [22] M. Martinez-Ripoll, A. Haase, and G. Brauer Acta Crystallogr. B, vol. 30, no. 8, pp. 2006–2009, 1974.

- [23] G. Zwiener, H. Neumann, and H.-U. Schuster Z. Naturforsch. B Chem. Sci., vol. 36, no. 9, pp. 1195–1197, 1981.
- [24] D. Ramirez, A. Gallagher, R. Baumbach, and T. Siegrist J. Solid State Chem., vol. 231, pp. 217– 222, 2015.
- [25] P. O. Gladyshevskii, E.I.; Kripyakevich Ukr. J. Phys, vol. 12, pp. 447–452, 1967.
- [26] S. Pukas, L. Pylypchak, O. Matselko, P. Demchenko, and R. Gladyshevskii Chem. Met. Alloys, vol. 5, pp. 59–65, 2012.
- [27] C. Kranenberg, D. Johrendt, A. Mewis, R. Pöttgen, G. Kotzyba, C. Rosenhahn, and B. D. Mosel Solid State Sci., vol. 2, no. 2, pp. 215–222, 2000.
- [28] S. Andersen, C. Marioara, R. Vissers, A. Frøseth, and H. Zandbergen Mater. Sci. and Eng. A, vol. 444, no. 1, pp. 157–169, 2007.
- [29] P. Schobinger-Papamantellos and F. Hulliger J. Less Common Met., vol. 146, pp. 327–335, 1989.
- [30] O. Zarechnyuk and T. Janson Dopov. Akad. Nauk Ukr. RSR, Ser. B: Geol., Khim. Biol. Nauki, vol. 4, pp. 30–31, 1982.
- [31] S. S. Stoyko, K. K. Ramachandran, P. E. Blanchard, K. A. Rosmus, J. A. Aitken, and A. Mar J. Solid State Chem., vol. 213, pp. 275–286, 2014.
- [32] A. Mahan and A. Mewis Z. Naturforsch. B Chem. Sci., vol. 38, no. 9, pp. 1041–1045, 1983.
- [33] P. E. Blanchard, S. S. Stoyko, R. G. Cavell, and A. Mar J. Solid State Chem., vol. 184, no. 1, pp. 97–103, 2011.
- [34] P. Klüfers, A. Mewis, and H.-U. Schuster Z. Kristallogr. Cryst. Mater, vol. 149, no. 1-4, pp. 211– 226, 1979.
- [35] H.-U. Schuster and H.-O. Fischer Z. Naturforsch., vol. 34b, pp. 1169–1170, 1979.
- [36] I. Grund, H.-U. Schuster, and P. Müller Z. Anorg. Allg. Chem., vol. 515, no. 8, pp. 151–158, 1984.
- [37] E. Jang, G. Nam, H. Woo, J. Lee, M.-K. Han, S.-J. Kim, and T.-S. You Eur. J. Inorg. Chem., vol. 2015, no. 17, pp. 2786–2793, 2015.
- [38] J. Prakash, M. C. Schäfer, and S. Bobev Acta Crystallogr. C, vol. 71, no. 10, pp. 894–899, 2015.
- [39] M. C. Schäfer, N. T. Suen, M. Raglione, and S. Bobev J. Solid State Chem., vol. 210, no. 1, pp. 89–95, 2014.
- [40] M. Khatun, S. S. Stoyko, and A. Mar *Inorg. Chem.*, vol. 52, no. 6, pp. 3148–3158, 2013.
- [41] X. Lai, X. Chen, S. Jin, G. Wang, T. Zhou, T. Ying, H. Zhang, S. Shen, and W. Wang *Inorg. Chem.*, vol. 52, no. 22, pp. 12860–12862, 2013.
- [42] A. Muravyeva and O. Zarechnyuk Inorg. Mater, vol. 6, pp. 933–934, 1970.
- [43] H. Flandorfer, D. Kaczorowski, J. Gröbner, P. Rogl, R. Wouters, C. Godart, and A. Kostikas J. Solid State Chem., vol. 137, no. 2, pp. 191–205, 1998.

- [44] C. Kranenberg, D. Johrendt, and A. Mewis Solid State Sci., vol. 4, no. 2, pp. 261–265, 2002.
- [45] C. Kranenberg, D. Johrendt, and A. Mewis Z. Anorg. Allg. Chem, vol. 625, no. 11, pp. 1787– 1793, 1999.
- [46] A. Muraveva, O. Zarechnyuk, and E. Gladyshevskii Inorg. Mater. (USSR) (Engl. Transl.), vol. 7, no. 1, pp. 34–36, 1971.
- [47] N. Muts, R. Gladyshevskii, and E. Gladyshevskii J. Alloys Compd., vol. 402, no. 1, pp. 66–69, 2005.
- [48] R. Xesper and H. G. v. Schnering Z. Naturforsch. B Chem. Sci., vol. 37, no. 12, pp. 1514–1517, 1982.
- [49] Q. Guo, J. Yu, B.-B. Ruan, D.-Y. Chen, X.-C. Wang, Q.-G. Mu, B.-J. Pan, G.-F. Chen, and Z.-A. Ren *EPL*, vol. 113, no. 1, p. 17002, 2016.
- [50] M. Khatun, S. S. Stoyko, and A. Mar Inorg. Chem., vol. 52, no. 6, pp. 3148–58, 2013.
- [51] B. Saparov and A. S. Sefat J. Solid State Chem., vol. 204, pp. 32–39, 2013.
- [52] P. Klufers and A. Mewis Z. Naturforsch. B, vol. 32, no. 7, pp. 753–756, 1977.
- [53] I. R. Shein and A. L. Ivanovskii Phys. Rev. B, vol. 84, p. 184509, 2011.
- [54] C. L. Condron, H. Hope, P. M. Piccoli, A. J. Schultz, and S. M. Kauzlarich *Inorg. Chem.*, vol. 46, no. 11, pp. 4523–4529, 2007.
- [55] J. Iglesias, K. Pachali, and H. Steinfink J. Solid State Chem., vol. 9, no. 1, pp. 6–14, 1974.
- [56] S. Leoni, W. Carrillo, W. Schnelle, and Y. Grin Solid State Sci., vol. 5, no. 1, pp. 139–148, 2003.
- [57] Y. C. Wang and F. J. DiSalvo J. Solid State Chem., vol. 156, no. 1, pp. 44–50, 2001.
- [58] M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. K. Ande, S. Van Der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson, and M. Asta *Sci. Data*, vol. 2, p. 150009, 2015.
- [59] A. Bhardwaj, A. Rajput, A. Shukla, J. Pulikkotil, A. Srivastava, A. Dhar, G. Gupta, S. Auluck, D. Misra, and R. Budhani *RSC Adv.*, vol. 3, no. 22, pp. 8504–8516, 2013.
- [60] Q. Cao, H. Zhang, M. Tang, H. Chen, X. Yang, Y. Grin, and J. Zhao J. Appl. Phys., vol. 107, no. 5, p. 053714, 2010.
- [61] F. Gascoin, S. Ottensmann, D. Stark, S. M. Haïle, and G. J. Snyder Adv. Funct. Mater., vol. 15, no. 11, pp. 1860–1864, 2005.
- [62] K. Guo, Q. Cao, X. Feng, M. Tang, H. Chen, X. Guo, L. Chen, Y. Grin, and J. Zhao Eur. J. Inorg. Chem., vol. 2011, no. 26, pp. 4043–4048, 2011.
- [63] J. Shuai, Y. Wang, Z. Liu, H. S. Kim, J. Mao, J. Sui, and Z. Ren Nano Energy, vol. 25, pp. 136–144, 2016.
- [64] J. Shuai, H. Geng, Y. Lan, Z. Zhu, C. Wang, Z. Liu, J. Bao, C.-W. Chu, J. Sui, and Z. Ren Proc. Natl. Acad. Sci. U.S.A., vol. 113, no. 29, p. E4125–E4132, 2016.

- [65] E. S. Toberer, A. F. May, B. C. Melot, E. Flage-Larsen, and G. J. Snyder *Dalton Trans.*, vol. 39, no. 4, pp. 1046–54, 2010.
- [66] X. Wang, M. Tang, H. Chen, X. Yang, J. Zhao, U. Burkhardt, and Y. Grin Appl. Phys. Lett., vol. 94, no. 9, p. 092106, 2009.
- [67] T. A. Wubieneh, P. C. Wei, C. C. Yeh, S. y. Chen, and Y. Y. Chen J. Electron. Mater., vol. 45, no. 3, pp. 1942–1946, 2016.
- [68] C. Yu, T. Zhu, S. Zhang, X. Zhao, J. He, Z. Su, and T. M. Tritt J. Appl. Phys., vol. 104, no. 1, p. 013705, 2008.
- [69] H. Zhang, J. Zhao, Y. Grin, X. Wang, Tang, Meibo, Z. Man, H. Chen, and X. Yang J. Chem. Phys., vol. 129, no. 16, p. 164713, 2008.
- [70] L. Zhang and D. J. Singh *Phys. Rev. B*, vol. 79, no. 9, p. 094528, 2009.
- [71] H. Zhang, M. Baitinger, M. Tang, Z. Man, H. Chen, X. Yang, Y. Liu, L. Chen, Y. Grin, and J. Zhao Dalton Trans., vol. 39, no. 4, pp. 1101–1104, 2010.
- [72] H. Zhang, L. Fang, M. Tang, H. Chen, X. Yang, X. Guo, J. Zhao, and Y. Grin *Intermetallics*, vol. 18, no. 1, pp. 193–198, 2010.
- [73] H. Zhang, M. Tang, W. Schnelle, M. Baitinger, Z. Man, H. Chen, X. Yang, J. Zhao, and Y. Grin J. Electron. Mater., vol. 39, no. 9, pp. 1772–1776, 2010.
- [74] J. Zhang, L. Song, G. K. Madsen, K. F. Fischer, W. Zhang, X. Shi, and B. B. Iversen Nat. Commun., vol. 7, 2016.
- [75] A. Zevalkink, W. G. Zeier, E. Cheng, G. J. Snyder, J.-P. Fleurial, and S. Bux Chem. Mater., vol. 26, no. 19, pp. 5710–5717, 2014.
- [76] L. Song, J. Zhang, and B. B. Iversen J. Mater. Chem., vol. 5, no. 10, pp. 4932–4939, 2017.
- [77] J. Shuai, Y. Wang, H. S. Kim, Z. Liu, J. Sun, S. Chen, J. Sui, and Z. Ren Acta Mater., vol. 93, pp. 187–193, 2015.
- [78] M. Wood, S. Ohno, U. Aydemir, and G. J. Snyder, "Optimizing the thermoelectric properties of the cazn2sb2 - camg2sb2 solid solution through carrier doping and alloy scattering," 2018.
- [79] J. Shuai, H. S. Kim, Z. Liu, R. He, J. Sui, and Z. Ren Appl. Phys. Lett., vol. 108, no. 18, p. 183901, 2016.
- [80] J. Shuai, Z. Liu, H. S. Kim, Y. Wang, J. Mao, R. He, J. Sui, and Z. Ren J. Mater. Chem. A, vol. 4, no. 11, pp. 4312–4320, 2016.
- [81] J. Zhang, L. Song, A. Mamakhel, M. R. V. Joergensen, and B. B. Iversen Chem. Mater., vol. 29, no. 12, pp. 5371–5383, 2017.
- [82] J. Zhang, L. Song, S. H. Pedersen, H. Yin, L. T. Hung, and B. B. Iversen Nat. Commun., vol. 8, p. 13901, 2017.