Supporting Information

Liangmiao Zhang^a, Jianing Yao^a, Fang Xia^b, Yunfeng Guo^a, Chuanxiang, Cao^a, Zhang Chen^{*a}, Yanfeng Gao^{*a}, Hongjie Luo^a

^a School of Materials Science and Engineering, Shanghai University, 99 Shangda Rd., Shanghai, China;

^b School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150, Australia

*Correspondence author. E-mail: <u>yfgao@shu.edu.cn</u>

Fig. S1. SEM image of the VO₂(D)-HCSMs (a) and their mapping images of V (b) and O (c).

Fig. S2. IR spectra of as-prepared VO₂(D)-HCSMs powder, MB, VO₂(D)-HCSMs loaded with MB and VO₂(D)-HCSMs after 4 cycles of MB adsorption and heat treatment at 250 °C for 4 h.

Fig. S3. XRD pattern of the C/VO_x nanoparticles formed by calcination of the $VO_2(D)$ -HCSMs after 4

cycles of adsorption.

Fig. S4 (a, b) SEM image of the C/VO_x nanoparticles. (c, d, e) element mapping images for V ,O, C.