Electronic Supplementary Information for

Photocatalytic active TiO₂ microtubes assembled with radially aligned

nanowires

Yang Xu,^a Wei Wen,^{a,b} Ming-Zao Tang^a and Jin-Ming Wu^{*a}

^a State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310037, P. R. China

^b College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, P. R.

China.

Fig. S1 Optical photographs of the PET fabrics (5 cm \times 5 cm in size) covered with a TiO₂ seed layer (a) and that after calcination (b); the titanate nanowires covered PET fabrics (c) and that after calcination (d). Note that after calcination in air at 550 °C for 1 h, the seed layer coated PET fabrics shrunk (arrowed); whilst its shape preserved after the precipitation of the titanate nanowires. After removing the PET fabrics, the resultant TiO₂ reserving the original shape of PET fabrics is fragile, which broke to powders upon stirring during the photocatalytic tests.

Fig. S2 FESEM images showing the thorough destroy of the TiO_2 microtubes upon grinding.