Electronic Supplementary Information (ESI):

Substituent effects on the aggregation-induced emission and two-photon absorption properties of triphenylaminedibenzo[*a*,*c*]phenazine adducts

Ji Yang,^a Yuting Gao,^a Tao Jiang,^a Wen Liu,^b Chenchen Liu,^a Niannian Lu,^a Bo Li,^c Ju Mei,^{*a} Qian Peng,^d Jianli Hua^{*a}

^{*a*} Key Laboratory for Advanced Materials, Institute of Fine Chemicals, College of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. E-mail: daisymeiju@ecust.edu.cn; jlhua@ecust.edu.cn; Fax:+86-21-64250940; Tel: +86-21-64250940

^b State Key Laboratory of Modern Optical Instrumentations and Center for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China

^c Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China.

^d Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Scheme S1 Synthetic routes to Q1–Q5.

Experimental section

Materials

Synthesis of 4, 4'-(dibenzo[*a*,*c*]phenazine-10,13-diyl)bis(*N*,*N*-diphenylaniline)

(Q1). A mixture of 10,13-dibromodibenzo[*a*,*c*]phenazine (219 mg, 0.5 mmol), (4-(diphenylamino)phenyl)boronic acid (434 mg, 1.0 mmol), and Pd(PPh₃)₄ (21 mg, 0.02 mmol) was dissolved in 15 mL THF under argon atmosphere. Aqueous solution of potassium carbonate (2 M, 5 mL) was added to the reaction solution and stirred at 80 °C for 12 h. After being cooled to room temperature, the reaction mixture was extracted by dichloromethane and water (3 × 15 mL). The combined organic layers were washed with water and dried over anhydrous Na₂SO₄. After removal of the solvent, the crude product was purified by column chromatography on silica gel with petroleum ether/DCM (2/1, v/v) as eluent to obtain compound **Q1** (620 mg, 54% yield) as a yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.17 (dd, *J* = 8.0, 1.4 Hz, 4H), 8.00 (s, 2H), 7.94–7.89 (m, 4H), 7.80–7.75 (m, 2H), 7.71–7.66 (m, 2H), 7.34–7.27 (m, 18H), 7.13 (dd, J = 8.6, 2.5 Hz, 2H), 7.11–7.06 (m, 4H). HRMS (ESI) (m/z): [M+H] Calcd for C₅₆H₃₉N₄: 767.3175, found: 767.3171.

Synthesis of 4, 4'-(dibenzo[*a*,*c*]phenazine-10,13-diyl)bis(*N*,*N*-bis(4-octylphenyl)

aniline) (Q3). A mixture of 10,13-dibromodibenzo[a,c]phenazine (220 mg, 0.5 mmol), (4-(bis(4-octylphenyl)amino)phenyl)boronic acid (520 mg, 1.0 mmol), and Pd(PPh₃)₄ (21 mg, 0.02 mmol) was dissolved in 15 mL THF under argon atmosphere. Aqueous solution of potassium carbonate (2 M, 5 mL) was added to the reaction solution and stirred at 80 °C for 12 h. After being cooled to room temperature, the reaction mixture was extracted by dichloromethane and water $(3 \times 15 \text{ mL})$. The combined organic layers were washed with water and dried over anhydrous Na₂SO₄. After removal of the solvent, the crude product was purified by column chromatography on silica gel using petroleum ether/DCM (1/1, v/v) as eluent to generate Q3 (350 mg, 57% yield) as an orange solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.23–9.16 (m, 2H), 8.56 (d, *J* = 8.0 Hz, 2H), 8.00 (s, 2H), 7.90 (d, J = 8.6 Hz, 4H), 7.78 (t, J = 7.5 Hz, 2H), 7.72–7.66 (m, 2H), 7.34–7.26 (m, 12H), 7.17 (d, J = 8.6 Hz, 8H), 1.75 (s, 8H), 1.40 (s, 24H), 0.79 (s, 36H). ¹³C NMR (100 MHz, Chloroform-d) δ 147.72, 144.99, 144.66, 141.03, 140.23, 138.83, 132.15, 131.87, 131.80, 130.73, 130.05, 129.22, 127.95, 127.03, 126.61, 123.95, 122.87, 122.23, 57.25, 38.26, 32.50, 31.82, 31.54. HRMS (ESI) (m/z): [M+H] Calcd for C₈₈H₁₀₃N₄: 1215.8183, found: 1215.8186.

Synthesis of 4, 4'-(dibenzo[*a*,*c*]phenazine-10,13-diyl)bis(*N*,*N*-bis(4-methoxyphenyl) aniline) (Q4). A mixture of 10,13-dibromodibenzo[*a*,*c*]phenazine (358 mg, 0.8 mmol), (4-(bis(4-methoxyphenyl)amino)phenyl)boronic acid (570 mg, 1.6 mmol), and Pd(PPh₃)₄ (21 mg, 0.02 mmol) was dissolved in 15 mL THF under argon atmosphere. Aqueous solution of potassium carbonate (2 M, 5 mL) was added to the reaction solution and stirred at 80 °C for 12 h. After being cooled to room temperature, the reaction mixture was extracted by dichloromethane and water (3 × 15 mL). The combined organic layers were washed with water and dried over anhydrous Na₂SO₄. After removing the solvent, the crude product was purified by column chromatography on silica gel with petroleum ether/DCM (1/2, v/v) as eluent to obtain **Q4** (520 mg, 72% yield) as a red solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.18 (dd, *J* = 7.9, 1.5 Hz, 2H), 8.55 (d, *J* = 8.1 Hz, 2H), 7.97 (s, 2H), 7.88 (d, *J* = 8.5 Hz, 4H), 7.81–7.74 (m, 2H), 7.69 (t, *J* = 7.5 Hz, 2H), 7.29–7.26 (m, 4H), 7.16 (q, *J* = 8.7 Hz, 16H), 2.36 (s, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.94, 148.25, 141.03, 140.27, 138.72, 131.79, 130.04, 129.17, 127.96, 126.82, 122.86, 119.83, 114.75, 55.55. HRMS (ESI) (m/z): [M+H] Calcd for C₆₀H₄₇N4O4: 887.3597, found: 887.3594.

Synthesis of 4, 4'-(dibenzo[*a*,*c*]phenazine-10,13-diyl)bis(*N*,*N*-bis(4-(octyloxy)

phenyl)aniline) (Q5). A mixture of 10,13-dibromodibenzo[*a*,*c*]phenazine (173 mg, 0.4 mmol), (4-(bis(4-(octyloxy)phenyl)amino)phenyl)boronic acid (430 mg, 0.8 mmol), and Pd(PPh₃)₄ (21 mg, 0.02 mmol) was dissolved in 15 mL THF under argon atmosphere. Aqueous solution of potassium carbonate (2 M, 5 mL) was added to the reaction solution and stirred at 80 °C for 12 h. After being cooled to room temperature, the reaction mixture was extracted by dichloromethane and water (3 × 15 mL). The combined organic layers were washed with water and dried over Na₂SO₄. After removal

of the solvent, the crude product was purified by column chromatography on silica gel using petroleum ether/DCM (1/2, v/v) as eluent to obtain **Q5** (365 mg, 72% yield) as a red solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.18 (d, *J* = 7.9 Hz, 2H), 8.55 (d, *J* = 8.1 Hz, 2H), 7.95 (s, 2H), 7.85 (d, *J* = 8.5 Hz, 4H), 7.80–7.72 (m, 2H), 7.72–7.65 (m, 2H), 7.24–7.15 (m, 12H), 6.89 (d, *J* = 8.8 Hz, 8H), 3.96 (t, *J* = 6.5 Hz, 8H), 1.86–1.73 (m, 8H), 1.46 (dt, *J* = 11.4, 5.3 Hz, 8H), 1.35–1.27 (m, 32H), 0.89 (t, *J* = 6.4 Hz, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.54, 148.29, 140.9, 140.83, 140.25, 138.69, 132.11, 131.76, 130.76, 130.56, 129.97, 129.13, 127.94, 126.82, 126.62, 124.48, 124.00, 122.82, 119.70, 115.30, 68.31, 31.86, 30.22, 29.43, 29.29, 26.14, 22.70, 14.14. HRMS (ESI) (m/z): [M+H] Calcd for C₈₈H₁₀₃N₄O₄: 1279.7979, found: 1279.7971.

Characterization:

Fig. S1¹H NMR of Q1.

Fig. S2 High-res ESI-TOF mass spectrum of Q1.

Fig. S3 ¹H NMR of Q2.

Fig. S5 High-res ESI-TOF mass spectrum of Q2.

Fig. S6 ¹H NMR of Q3.

Fig. S7 ¹³C NMR of compound Q3.

Fig. S8 High-res ESI-TOF mass spectrum of Q3.

Fig. S9 ¹H NMR of Q4.

Fig. S11 High-res ESI-TOF mass spectrum of Q4.

Fig. S14 High-res ESI-TOF mass spectrum of Q5.