Dithieno[3,2-*a*:3',2'-*j*][5,6,11,12]chrysene diimdes and their Molecular Energy Levels Regulation

Xueqian Zhao^a, Congwu Ge^a, Xiaodi Yang^b, Xike Gao^{*a}

^a Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules,

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

^b Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.

Email: gaoxk@mail.sioc.ac.cn

Table of Contents

1.	Measurements and characterization	S2
2.	TGA and DSC of 1a , 2a , and 3a	S2
3.	Absorption spectra of 1a, 2a, and 3a	S 3
4.	Fabrications and characterizations of OTFT devices, XRD plots of thin films	of 2a
	and 3a	S 3
5.	Crystal data and structure of 3b , .AFM images of thin films of 2a and 3a	S4
6.	NMR, MS and IR spectra	S 5

1. Measurements and characterization

¹H NMR spectra were measured on a Varian Mercury 300 MHz or 400 MHz instrument using tetramethylsilane (TMS) as an internal standard. ¹³C NMR spectra (100 MHz) were measured on a Varian Mercury 400 MHz instrument. Mass spectra (MALDI-TOF) were recorded on a Voyager-DE STR mass spectrometer. EI-MS and HRMS (MALDI) were carried out on HP5973 and Ino Spec 4.7 T FTMS, respectively. Elemental analyses were performed on an Elementar Vario EL III elemental analyzer. Electronic absorption spectra were measured on a U-3900 UV-vis spectrophotometer. Fluorescence spectra were measured on a HITACHI F-2700 fluorescence spectrophotometer. TGA measurements were carried out on a TA Q500 instruments under a dry nitrogen flow at a heating rate of 10 °C/min, heating from room temperature to 500 °C. DSC analyses were performed on a TA Q2000 instrument under a nitrogen atmosphere at a heating (cooling) scan rate of 10 °C/min heated from 0 °C to 100 °C for **1a**, from 0 °C to 350 °C for **2a**, and from 0 °C to 300 °C for **3a**. Electrochemical measurements were carried out on a CHI610D electrochemical workstation using a platinum working electrode, a platinum-wire auxiliary electrode, and a saturated calomel electrode (SCE) as reference electrode in a solution of tetra-nbutylammoniumhexafluorophosphate (0.1 M) in CH_2Cl_2 at a scan rate of 100 mV/s. The mercury lamp's model is CEL-M500 purchased from CEAULIGHT Company. Melting points were measured on aWRS-1A microscopic melting point apparatus. AFM was recorded on a Nanoscope IIIa atomic force microscopy (AFM) in tapping mode. X-ray diffraction (XRD) measurements were carried out in the reflection mode using a 2-kW Rigaku X-ray diffraction system.

Figure S1. TGA plots of 1a, 2a, and 3a (10 °C/min under N_2) (a) and DSC plots of 1a (b), 2a(c), and 3a (d) (10 °C/min under N_2).

3. Absorption spectra of 1a, 2a, and 3a.

Figure S2. Absorption spectra of 1a, 2a, 3a in dichloromethane solution and in films

4. Fabrications and characterizations of OTFT devices

An n-type heavily doped Si wafer with a SiO2 layer of 300 nm and a capacitance of $9.8nF/cm^2$ was used as the gate electrode and dielectric layer. Thin films of **1a**, **2a** and **3a**(30–50 nm in thickness) were deposited on octadecyltrichlorosilane (OTS)-treated SiO2/Si substrates by spin-coating their respectively solutions (10 mg/mL). Then, the thin films were annealed at different temperatures for improving their thin-film quality/morphology. Gold source and drain contacts (50 nm in thickness) were deposited by vacuum evaporation on the organic layer through a shadow mask, affording a bottom-gate top-contact device configuration. The channel width (W) /length (L) = 8.95. Electrical measurements of OTFT devices were carried out at room temperature in N₂ atmosphere using a Keithley 4200 semiconductor parameter analyzer. The field-effect mobility was calculated in the saturation regime by using the equation IDS= (μ WCi/2L)(VG – VT)2, where IDS is the drain-source current, μ is the field-effect mobility, W is the channel width, L is the channel length, Ci is the capacitance per unit area of the gate dielectric layer, VG is the gate voltage, and VT is the threshold voltage.

Figure S3. XRD patterns of thin films of **2a** (a: as spin-coated; b: annealed at 80 °C), **3a** (c: as spin-coated; d: annealed at 120 °C).

Figure S4.AFM images of thin films of **2a** (a: as spin-coated; b: annealed at 80 °C), **3a** (c: as spin-coated; d: annealed at 120 °C).

5. Table S1. Crystal data and structure of **3b**.

Identification code	Р
Empirical formula	CHNOS
Formula weight	75.09
Temperature	173(2) K
Wavelength	1.54178 A
Unit cell dimensions	a=16.2355(11)Aalpha = 90deg. b=14.4863(9) A beta = 106.064(4) deg. c=17.7924(11)A gamma = 90 deg.
Volume	4021.2(4) A^3
Z, Calculated density	80, 2.481 Mg/m^3
Absorption coefficient	11.017 mm^-1
F(000)	3040
Theta range for data collection	4.16 to 68.76 deg.
Limiting indices	-18<=h<=19, -17<=k<=17, -21<=l<=21
Reflections collected / unique	22565 / 7149 [R(int) = 0.0615]
Completeness to theta $= 68.76$	96.0 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7149 / 509 / 525
Goodness-of-fit on F^2	1.021
Final R indices [I>2sigma(I)]	R1 = 0.0731, w $R2 = 0.1872$
R indices (all data)	R1 = 0.1051, $wR2 = 0.2133$
Largest diff. peak and hole	0.630 and -0.302 e.A^-3

6. NMR, MS and IR spectra

S19

S23

·
306
291
249
4 264 273
240 250 260 270 280 290 300 310 3
240 250 240 210 240 240 340 310 3 1∕z %RA m/z %RA m/z %RA
240 250 260 270 280 260 360 370 3 1/z %RA m/z %RA m/z %RA 52 1.63 166 2.26 181 4.33
240 250 260 210 260 260 310 3 1/z %RA m/z %RA m/z %RA 52 1.63 166 2.26 181 4.33 53 0.65 167 2.96 182 0.86
zło zło zło zło zło zło sło
zło zło zło zło zło zło sło
zio zio <thz< th=""> <thz< th=""> <thz< th=""></thz<></thz<></thz<>
zio zio <thzio< th=""> <thzio< th=""> <thzio< th=""></thzio<></thzio<></thzio<>
zio zio <thz< th=""> <thz< th=""> <thz< th=""></thz<></thz<></thz<>
zio zio <thz< th=""> <thz< th=""> <thz< th=""></thz<></thz<></thz<>
zio zio <thzio< th=""> <thzio< th=""> <thzio< th=""></thzio<></thzio<></thzio<>
zio zio <thzio< th=""> <thzio< th=""> <thzio< th=""></thzio<></thzio<></thzio<>
zio zio <thz< th=""> <thz< th=""> <thz< th=""></thz<></thz<></thz<>

Instrument: Waters Micromass GCT Premier Ionisation Mode: El+ Electron Energy: 70eV

Card Serial Number: GCT-P-T14-10-2985

Sample Serial Number: ZXQ-2-vap

Operator: Li

Date: 2014/10/12

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 1141 formula(e) evaluated with 5 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-80 O: 0-4 S: 0-1 I: 0-2 10B: 0-2 11B: 0-2 Si: 0-1

Minimum:				-1.5				
Maximum:		2.0	5.0	50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
305.1315	305.1317	-0.2	-0.7	6.0	21.7	C15 H2	3 02 S	10B Si
	305.1317	-0.2	-0.7	-1.5	5425.7	C8 H24	O I 10	DB2 11B2
	305.1309	0.6	2.0	15.5	10253.1	C21 H1	5 O 11B2	2
	305.1306	0.9	2.9	18.5	5859.9	C21 H1	1 10B2 1	11B2
	305.1305	1.0	3.3	6.0	1385.8	C14 H2	0 04 S	10B 11B

306.1281

TMS

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M20150048

Sample Serial Number: ZXQ-3-19

Operator : HUAQIN Date: 2015/01/06

Operation Mode: MALDI_DHB

Elemental composition search on mass 1295.85

m/z= 1290.	85-1300.85			
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
1295.8504	1295.8511	-0.55	23.0	C 80 H 121 O 5 N 3 S 2 Si
	1295.8457	3.63	22.5	C80 H123 O4 N2 S2 Si2

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M20150050

Sample Serial Number: ZXQ-3-20

Operator : HUAQIN Date: 2015/01/06

Operation Mode: MALDI_DHB

1146 33 1156 33

Elemental composition search on mass 1151.77

m/2 = 1140.	//-1156.//			
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
1151.7711	1151.7707	0.36	26.5	C 79 H 107 O 2 S 2
	1151.7700	0.92	17.5	C71 H111 O4 N2 S3
	1151.7727	-1.41	22.0	C74 H109 ON3 S3
	1151.7694	1.52	27.0	C77 H105 ON3 S2
	1151.7741	-2.57	21.5	C76 H111 O2 S3
	1151.7667	3.85	22.5	C74 H107 O4 N2 S2
	1151.7759	-4.14	27.0	C 78 H 105 O 4 N S
	1151.7660	4.45	32.0	C 80 H 101 O N 3 S
	1151.7633	6.77	27.5	C77 H103 O4 N2 S
	1151.7793	-7.07	22.0	C75 H109 O4 N S2

 $C_{12}H_{25}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M150372

Sample Serial Number: ZXQ-2-86

Operator : HUAQIN Date: 2015/01/26

Operation Mode: MALDI_DHB

Elemental composition search on mass 1150.76

m/z= 1145.	76-1155.76			
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
1150.7606	1150.7615	-0.82	27.5	C 77 H 104 O N 3 S 2
	1150.7622	-1.42	18.0	C71 H110 O4 N2 S3
	1150.7589	1.51	23.0	C74 H106 O4 N2 S2
	1150.7629	-1.99	27.0	C79 H106 O2 S2
	1150.7582	2.11	32.5	C 80 H 100 O N 3 S
	1150.7649	-3.75	22.5	C74 H108 ON3 S3
	1150.7555	4.44	28.0	C77 H102 O4 N2 S
	1150.7662	-4.92	22.0	C76 H110 O2 S3

10 0 1550 1600 1500 1250 1300 1350 1400 1450 1150 1200 1050 1100 1000 m/z

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M161836

Sample Serial Number: zxq-4-62

Operator : HUAQIN Date: 2016/7/12

Operation Mode: MALDI-FT_DHB

Elemental composition search on mass 847.34

m/z= 842.	34-852.34			
m/z	Theo.	Delta	RDB	Composition
	Mass	(ppm)	equiv.	
847.3445	847.3449	-0.55	22.5	C48 H59 O4 N2 S2 Si2

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M161838

Sample Serial Number: zxq-4-63

Operator : HUAQIN Date: 2016/7/12

Operation Mode: MALDI-FT_DHB

Elemental composition search on mass 703.27

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
703.2663	703.2665	-0.31	31.5	C 50 H 39 O 2 S
	703.2659	0.62	22.5	C42 H43 O4 N2 S2
	703.2652	1.60	32.0	C 48 H 37 O N 3 S
	703.2686	-3.19	27.0	C 45 H 41 O N 3 S 2

C₈H₁₇ s O N C₈H₁₇ S

C8H17

C₈H₁

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M161840

Sample Serial Number: zxq-4-64

Operator : HUAQIN Date: 2016/7/12

Operation Mode: MALDI-FT_DHB

Elemental composition search on mass 955.06

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
955.0593	955.0592	0.10	22.5	C 42 H 41 O 4 N 2 I 2 S 2
	955.0598	-0.58	31.5	C 50 H 37 O 2 I 2 S
	955.0585	0.83	32.0	C 48 H 35 O N 3 I 2 S
	955.0618	-2.70	27.0	C 45 H 39 O N 3 I 2 S 2
	955.0558	3.63	27.5	C45 H37 O4 N2 I2 S
	955.0632	-4.11	26.5	C47 H41 O2 I2 S2

S43

Shanghai Institute of Organic Chemistry

星期五 7月 15 16:51:40 2016 (GMT+08:00)

Shanghai Institute of Organic Chemistry

Shanghai Institute of Organic Chemistry

工划二 1月 20 18:18:08 2015 (GMT+08:00)

S45

Shanghai Institute of Organic Chemistry

星期四 12月 22 11:03:56 2016 (GMT+08:00)

