Supplementary Information

Exfoliated metal free homojunction photocatalyst prepared by biomediated route for enhanced Hydrogen evolution and Rhodamine B degradation

Satyabadi Martha,^{a*} Sriram Mansingh,^a K. M. Parida,^{a*} Arun Thirumurugan^b ^aCentre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar-751030, India

^bInstitute of Physics, Sachivalaya Marg, Bhubaneswar- 751005, India

FTIR

Fig. S1 FTIR spectrum of g-C₃N₄ and g-C₃N₄ (Oyster shell)

Fig. S2 Band gap energy determination of $g-C_3N_4$ and $g-C_3N_4$ (Oyster shell)

Fig. S3 Edx study of $g-C_3N_4$ (Oyster shell)

File Name	EFM160322Height002
Head Mode	NC-AFM
Source	Height
Data Width	256 (pxl)
Data Height	256 (pxl)
X Scan Size	5 (µm)
Y Scan Size	5 (µm)
Scan Rate	0.5 (Hz)
Z Servo Gain	5
Set Point	21.07 (nm)
Amplitude	28.94 (nm)
Sel. Frequency	313.89E3 (Hz)
Drive	5.6 (%)

Fig. S4 AFM image of g-C3N4 (oyster shell)

Fig. S5 XPS spectra of g- C_3N_4 and g- C_3N_4 (Oyster shell)

Fig. S6 XPS spectra of g-C₃N₄ (Oyster shell)

SL.	Title	Method of Exfoliation	Ref.
No.			
1	Atomically Thin Mesoporous	Solvothermal route	1
	Nanomesh of Graphitic C_3N_4 for		
	High-efficiency Photocatalytic		
	Hydrogen Evolution		
2	Exfoliated Graphitic Carbon Nitride	Sonication	2
	Nanosheets as Efficient		
	Catalysts for Hydrogen Evolution		
	Under Visible Light		

Table S1	Various reported	work on	exfoliated	of g-C ₃ N ₄
----------	------------------	---------	------------	------------------------------------

3	Enhanced Photoresponsive Ultrathin Graphitic-Phase C ₃ N ₄ Nanosheets for Bioimaging	Liquid exfoliation route	3
4	Crystalline Carbon Nitride Nanosheets for Improved Visible- Light Hydrogen Evolution	Liquid phase exfoliation	4
5	Functionalized Graphitic Carbon Nitride for Metal-free, Flexible and Rewritable Nonvolatile Memory Device via Direct Laser-Writing	Chemically	5
6	Preparation and enhanced visible light photocatalytic activity of novel g-C ₃ N ₄ nanosheets loaded with Ag ₂ CO ₃ nanoparticles	Thermally	6
7	Au-Nanoparticle-LoadedGraphiticCarbon NitrideNanosheets:GreenPhotocatalyticSynthesisandApplicationtowardthe Degradationof Organic Pollutants	Ultrasonication	7
8	Mechanically exfoliated g-C ₃ N ₄ thin nanosheets by ball milling as high	Mechanical	8

	performance photocatalysts		
9	One step synthesis of exfoliated metal free $g-C_3N_4$ via Bio-mediate route for photocatalytic applications	One step Biomediate route (simple thermal condensation of melamine over Oyster shell)	Present work

Table S2: Work reported on p-n homojunction $g-C_3N_4$

1	Title	Method of	Conversion	Reference
		preparation	efficiency (%)	
1	InSituBondModulationofGraphiticCarbonNitridetoConstructp-nHomojunctionsforEnhancedPhotocatalyticHydrogen	Treaetment of g- C3N4 with NaBH4 at various temperature		9
	Production			
2	Exfoliated metal free homojunction photocatalyst prepared by biomediated route for enhanced visible light assisted photocatalytic activity	Thermal condensation of melamine over Oyster shell (biomediate route)	5.71	Present work

Fig. S7 TGA plot of oyster shell

Fig. S8 TEM image of $g-C_3N_4$ prepared over calcined Oyster shell

Fig. S9 TGA of g-C₃N₄ (Oyster shell)

References:

[1] Q.Han, B.Wang, J.Gao, Z.Cheng, Y.Zhao, Z.Zhang, and L.Qu, ACS Nano 2016, 10, 2745– 2751

[2] S. B. Yang, Y. J. Gong, J. S. Zhang, L. Zhan, L. L. Ma, Z. Y. Fang, R. Vajtai, X. C. Wang and P.M. Ajayan, *Adv. Mater.* 2013, **25**, 2452–2457.

[3] X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan and Y. Xie, J. Am. Chem. Soc. 2013, 135, 18–21.

[4] K. Schwinghammer, M. B. Mesch, V. Duppel, C. Ziegler, J. Senker and B. V. Lotsch, *J. Am. Chem. Soc.*, 2014, **136**, 1730–1733.

[5] F. Zhao, H. Cheng, Y. Hu, L. Song, Z. Zhang, L. Jiang and L. Qu, *Scientific Reports*, 2014, 4, 5882.

[6] Y. Li, L. Fang, R. Jin, Y. Yang, X. Fang, Y. Xing and S. Song, *Nanoscale*, 2015, 7, 758-764

[7] N. Cheng, J. Tian, Q. Liu, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi and X. Sun, *ACS Appl. Mater. Interfaces*, 2013, **5**, 6815–6819.

[8] K. Zhu, W. Wang, A. Meng, M. Zhao, J. Wang, M. Zhao, D. Zhang, Y.Jia, C. Xu and Z. Li, *RSC Adv.*, 2015, 5, 56239-56243.

[9] G. Liu, G. Zhao, W. Zhou, Y. Liu, H. Pang, H. Zhang, D. Hao, X. Meng, P. Li, T. Kako, and J. Ye, *Adv. Funct. Mater.* 2016, **26**, 6822-6829.