Electronic Supplementary Information

Water-Assisted Growth of Large-Sized Single Crystal Hexagonal

Boron Nitride Grains

Lifeng Wang,^{a,b} Bin Wu,^{a*} Hongtao Liu,^a Li Huang,^a Yongtao Li,^a Wei Guo,^a Xin Chen,^a Peng Peng,^a Lei Fu,^a Yunchang Yang,^a PingAn Hu,^{b*} Yunqi Liu^{a*}

^a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P.R. China
E-mail: wubin@iccas.ac.cn; liuyq@iccas.ac.cn
^b Key Lab of Microsystem and Microstructure, Ministry of Education, Harbin Institute of Technology,

Harbin 150080, P. R. China

E-mail: hupa@hit.edu.cn

Figure	Growth	Belt heating	Ar (sccm)	$H_2 + water$	Growth time
	Temperature (°C)	temperature(°C)		vapor (sccm)	(min)
2a	1140	70	20	3 + 0	50
2b	1140	70	20	0 + 3	50
2c	1140	70	20	0 + 10	50
2d	1140	70	20	0 + 20	50

Table S1 Growth conditions of h-BN with different amount of water vapor

Figure	Etching Temperature	Ar (sccm)	Ar + water vapor (sccm)	H ₂ (sccm)	H ₂ + water vapor (sccm)
	(°C)				
S3a	1000	20	20	0	0
S3b	1000	20	20	0	0
S3c	1000	0	0	3	3
S3d	1000	0	0	3	3

Table S2 Etching conditions of h-BN domains with different Ar, H_2 and water vapor.

Table S3 Shape evolution of h-BN domains with different $Ar:H_2$ flow ratio.

Figure	Growth	Belt heating	Ar (sccm)	H_2 + water	Growth time
_	Temperature (°C)	temperature(°C)		vapor (sccm)	(min)
3a and 3e	1140	70	20	3	60
3b and 3f	1140	70	100	3	60
3c and 3g	1140	70	200	3	60
3d and 3h	1140	70	400	3	60

Fig. S1 (a) Optical image of triangular h-BN domains on Cu foil. (b) Optical image of h-BN film on Cu

foil. (c) and (d) Optical images of h-BN transferred onto SiO₂/Si substrate.

Fig. S2 (a) Size distribution of h-BN domains as a function of the amount of water vapor. (b) Nucleation density of h-BN in a $20 \times 20 \ \mu m^2$ area as a function of the amount of water vapor. These data are obtained based on the experimental conditions of Fig. 2.

Fig. S3 Typical SEM images of a series of etched h-BN patterns under different etching conditions. (a) Ar gas. (b) Ar gas and water vapor. (c) H_2 gas. (b) H_2 gas and water vapor.

Fig. S4 The corresponding B (KLL) and N (KLL) Auger electron maps for h-BN film, respectively.

Fig. S5 A STM current image (a) and the corresponding Fourier transform image (b) of monolayer h-BN on Cu surface, showing the typical h-BN lattice structure with lattice constant of 0.253 nm.

Fig. S6 A typical TEM image of a hexagonal h-BN on holey carbon grid and SAED patterns recorded on different locations labeled in TEM image.

Fig. S7 (a) A typical optical image of a graphene/h-BN/SiO₂/Si FET device showing hexagonal graphene flake and Au electrodes. Channel length and width are also indicated in the image