Supporting Information

Supramolecular Conjugated Polymer Materials for Organelle Imaging in Living Cells

Rong Hu, Shengliang Li, Huan Lu, Libing Liu*, Fengting Lv and Shu Wang*

Experimental Section

Materials and Measurements: All chemicals were purchased from Sigma-Aldrich Chemical Company, or Beijing Chemical Works and used as received. PT was synthesized according to the procedure in literatures.^[1] HeLa cells were obtained from cell culture center of Institute of Basic Medical Sciences, Chinese Academy of Medical Science (Beijing, China). Fetal bovine serum (FBS) was purchased from Sijiqing Biological Engineering Materials. PBS, DMEM (Dulbecco's modified Eagle medium) and Opti-MEM reduced serum medium were purchased from HyClone/Termo Fisher Scientific (Beijing, China). Water was purified with a Millipore filtration system. MTT was purchased from Tiangen Biotech (Beijing, China). Lipo 2000, LysoTracker, MitoTracker, GolgiTracker and ERTracker were purchased from Life Technologies (Beijing, China). Tat-His₆ peptide was purchased from SBS Genetech Co. Ltd. (Beijing, China). RFP-His₁₀ protein was purchased from Yingrun Biotechnology Co., Ltd (Changsha, China). pCDNA3.1-moRED-GolgiH10, pCDNA3.1-moRED-MitoH10 and pCDNA3.1-moRED-ERH10 plasmids were constructed by Yingrun Biotechnology Co., Ltd (Changsha, China). Confocal laser scanning microscope (CLSM) characterization was conducted with a confocal laser scanning biological microscope (FV1000-IX81, Olympus, Japan). The absorbance for MTT analysis was recorded on a microplate reader (BIO-TEK Synergy HT, USA) at a wavelength of 570 nm. Ultrafiltration tubes were purchased from Minipore (50 kd, USA). Automated cell counter (Countess, Invitrogen) was employed for cell

counting. Zeta potentials and size were carried out on a Nano ZS (ZEN3600, U.K.) system. Agarose gel electrophoresis was conducted on electrophoresis apparatus (DYY-6C, Beijing, China). Calorimetric measurements were carried out on a TAM III microcalorimetric system ((Thermometric AB, Sweden). X-ray photoelectron spectroscopy was carried on ESCALAB250XI surface analysis system (Thermo Scientific, USA).

The preparation of PT/Ni²⁺/Tat-His₆ complex: 2 μ L of PT (10 mM) stock solution was added into 1 mL of H₂O, and then 2 μ L of Tat-His₆ (10 mM) and 2 μ L of Ni²⁺ (NiCl₂, 20 mM) were added into the above solution followed by mixing gently. The prepared complex solution was purified by using ultrafiltration tubes with the molecular cutoff of 50 kd and washed by H₂O for three times. The concentrated solution was dispersed in PBS (2×) to afford final PT/Ni²⁺/Tat-His₆ complex solution. The concentration of complex was quantified as that of PT (10 μ M in RUs).

PT/Ni²⁺/Tat-His₆ complex for organelle imaging: (a) HeLa cells were cultured at 30 mm cell culture dish at 37 °C overnight. After reaching 80% confluence, HeLa cells were cultured with 2 mL of Opti-MEM reduced serum medium. 4 μ g of plasmid (pCDNA3.1-moRED-GolgiH10, pCDNA3.1-moRED-MitoH10 and pCDNA3.1-moRED-ERH10) and 10 μ L of Lipo 2000 were mixed at Opti-MEM reduced serum medium and added to cell culture dish gently. After incubation for 4 h, the opti medium was changed into 2 mL of DMEM with 10% FBS. After 72 h, cells were ready for next use. (b) The transfected HeLa cells were seeded at a 6-well culture chamber slide, and cells were washed by PBS for 3 times and exposed to 1 mL of chloroquine (0.25 mM) in PBS for 30 min. After washed by PBS, HeLa cells were incubated with 1 mL of PT/Ni²⁺/Tat-His₆ complex (10 μ M) in PBS for 1 h at 37 °C followed by 3 h incubation in 1 mL of DMEM with 10% FBS. The specimens were examined by CLSM with a 488 nm laser for PT and 559 nm for red fluorescence protein.

Isothermal Titration Microcalorimetry (ITC): Calorimetric measurements were carried out at 25.00 ± 0.01 °C on a TAM III microcalorimetric system with a stainless-steel sample cell of 1 mL. All measurements were operated in PBS buffer. 1) The cell was initially loaded with 0.6 mL Tat-His₆ (10 μ M and 200 μ M), RFP-His₁₀ (10 μ M), PT (200 μ M) or PT/Tat-His₆ (10 μ M) solutions, respectively. And then Ni²⁺ solutions (4-fold to the concentration of component) were injected consecutively into the stirred sample cell in portions of 10 μ L via a 500 μ L Hamilton syringe controlled by a 612 Thermometric Lund pump until the desired concentration range had been covered, respectively. The observed enthalpy values (ΔH_{obs}) were obtained from the areas of the calorimetric peaks after titrations. The reference cell was filled with 765 μ L buffer solutions. The final dilution enthalpies of Ni²⁺ were subtracted from the corresponding observed enthalpy curve of the Ni²⁺/PT, Ni²⁺/ RFP-His₁₀, Ni²⁺/Tat-His₆ or Ni²⁺/PT+Tat-His₆ titrating curves. Thus the final ΔH_{obs} curves reflect the interactions of Ni²⁺ with polymer or protein. Each ITC curve was repeated at least twice with a deviation less than ± 4%.

2) The cell was initially loaded with 0.6 mL RFP-His₁₀ (10 μ M) or Tat-His₆ (10 μ M) PBS solution, and then the mixture of 40 μ M PT-Ni²⁺ PBS solutions were injected consecutively into the stirred sample cell in portions of 10 μ L via a 500 μ L Hamilton syringe controlled by a 612 Thermometric Lund pump until the desired concentration range had been covered. The observed enthalpy values (ΔH_{obs}) were obtained from the areas of the calorimetric peaks after titrations. The reference cell was filled with 765 μ L buffer solutions. The final dilution enthalpies of Ni²⁺ were subtracted from the corresponding observed enthalpy curves of titrating PT-Ni²⁺ mixtures into RFP-His₁₀ or Tat-His₆ solutions. Thus the final ΔH_{obs} curves reflect the interactions of PT-Ni²⁺ with proteins. Each ITC curve was repeated at least twice with a deviation less than \pm 4%.

X-ray photoelectron spectroscopy (XPS):5 μ L of PT/Ni²⁺/Tat-His₆ complex (100 μ M), Tat-His₆ (100 μ M) and PT (100 μ M) were added to silicon pellet followed by vacuum drying for 5 h under 45°C. Then Multi-function energy spectrum analysis was carried.

Size and zeta potential assay of PT and PT/Ni²⁺/Tat-His₆ complex: (1) For PT and PT/Ni²⁺/Tat-His₆ complex: 1 μ L of PT (10 mM) was dissolved in 1 mL of H₂O, 1 μ L of PT and 1 μ L of Ni²⁺ were dissolved in 1 mL of H₂O, 1 μ L of PT and 1 μ L of Tat-His₆ were dissolved in 1 mL of H₂O or 1 mL of PT/Ni²⁺/Tat-His₆ (10 μ M) complex in H₂O followed by measurement of size and zeta potential on Nano ZS system. (2) For PT/Ni²⁺/Tat-His₆ complex incubated with RFP-His₁₀: after preparing complex, 20 μ g of RFP-His₁₀ was added to 1 mL of PT/Ni²⁺/Tat-His₆ complex (10 μ M) solution and incubated for 30 min at 37 °C followed with size and zeta potential measurements.

Cell culture: HeLa cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) in a humidified atmosphere containing 5% carbon dioxide at 37 °C.

Cell viability assay: HeLa cells were seeded in 96-well plate with 8×10^3 cells per well. After incubating overnight, cells were incubated with PT1/Ni²⁺/Tat-His₆, PT/Ni²⁺/Tat-His₆ and PT3/Ni²⁺/Tat-His₆ complex respectively in DMEM (10% FBS) with the final concentration ranging from 0 μ M to 50 μ M (100 μ L /well). 24 h later, 100 μ L of MTT (10 μ M) in DMEM (10% FBS) was added, and 4 h incubation was needed. After removing the culture medium, 100 μ L of DMSO was added to every well. The absorption was recorded by a microplate reader at 570 nm after shaking for 2 min. The cell viability ratio (VR) was evaluated according to the following equation:

$$VR = \frac{A}{A_0} \times 100\%$$

Where A_0 is the absorbance of cells without any drugs, and A is the absorbance of cells incubated with complex.

Cellular uptake of PT/Ni²⁺/Tat-His₆ complex: For PT/Ni²⁺/Tat-His₆ complex: HeLa cells were seeded at a 6-well culture chamber slide, and cells were washed by PBS for 3 times and exposed to 1 mL of chloroquine (0.25 mM) in PBS for 30 min. After washed by PBS, HeLa cells were incubated with 1 mL of PT/Ni²⁺/Tat-His₆ complex (10 μ M) in PBS for 1 h at 37 °C followed by 3 h incubation in 1 mL of DMEM with 10% FBS. The specimens were examined by CLSM with a 488 nm laser. As control, the incubation conditions of PT/Ni²⁺, PT/Tat-His₆ and PT were as same as PT/Ni²⁺/Tat-His₆ complex, and the final concentrations of these complexes were 10 μ M.

The measurement of internalization speed for PT/ Ni²⁺/Tat-His₆: HeLa cells were seeded at a 30 mm culture chamber slide, and cells were washed by 1 mL of PBS for 3 times and exposed to 1 mL of chloroquine (0.25 mM) in PBS for 30 min. After washed by PBS for three times, HeLa cells were incubated with 1 mL of PT/Ni²⁺/Tat-His₆ complex (10 μ M) in PBS for 1 h at 37 °C. Then cells were incubated in DMEM with 10% FBS for 0 h, 1 h and 3 h respectively, followed by incubation with 1 mL of DiD (2 μ M) for 30 min and 1 mL of Hoechst 33342 (1 μ M) in PBS for 10 min under dark at 37 °C. The specimens were examined by CLSM with a 405 nm laser for Hoechst, a 488 nm laser for PT and a 635 nm laser for DiD.

The stabilization of $PT/Ni^{2+}/RFP-His_{10}$ complex inside transfected HeLa cells: After incubated with 1 mL of $PT/Ni^{2+}/Tat-His_6$ complex (10 µM) in PBS for 1 h, two groups of transfected HeLa cells were cultured in 1 mL of DMEM with 10% FBS for 3 h and 23 h,

respectively. The specimens were examined by CLSM with a 488 nm laser for PT and 559 nm for RFP.

Colocalization of PT/Ni²⁺/Tat-His₆ complex with organelle dyes (ERTracker Red, MitoTracker Red, LysoTracker Red and GolgiTracker): HeLa cells were exposed to 1 mL of chloroquine (0.25 mM) in PBS for 30 min and incubated with 1 mL of PT/Ni²⁺/Tat-His₆ complex (10 μ M) as described above. After a brief PBS wash, cells were cultured with 1mL of ERTracker Red, MitoTracker Red, and LysoTracker Red in PBS with the final concentration of 1 μ M under dark for 30 min respectively. For GolgiTracker, cells were cultured with it in 1 mL of PBS with the final concentration 1 μ M under 4 °C for 30 min followed by incubation in DMEM with 10% FBS at 37 °C for 30 min sequentially. Cells were washed by PBS for three times and then observed by CLSM. PT was excited by 488 nm laser and that of organelle dyes were 559 nm laser.

Plasmids: The sequence of plasmids encoding for Golgi-RFP-His₁₀, ER-RFP-His₁₀ and Mito-RFP-His₁₀ are listed as follows:

(1) pCDNA3.1- moRED-GolgiH10 (expression of Golgi-RFP-His₁₀):

ACCCCGCCGACATCCCCGACTACATGAAGCTGTCCTTCCCCGAGGGCTTCACCTG GGAGCGCTCCATGAACTTCGAGGACGGCGGCGTGGTGGAGGTGCAGCAGGACTC CTCCCTGCAGGACGGCACCTTCATCTACAAGGTGAAGTTCAAGGGCGTGAACTTC CCCGCCGACGGCCCCGTAATGCAGAAGAAGAAGACTGCCGGCTGGGAGCCCTCCACC GAGAAGCTGTACCCCCAGGACGGCGTGCTGAAGGGCGAGATCTCCCACGCCCTG AAGCTGAAGGACGGCGGCCACTACACCTGCGACTTCAAGACCGTGTACAAGGCC AAGAAGCCCGTGCAGCTGCCCGGCAACCACTACGTGGACTCCAAGCTGGACATC ACCAACCACAACGAGGACTACACCGTGGTGGAGCAGTACGAGCACGCCGAGGCC CGCCACTCCGGCTCCCAGGGACATCACCACCATCATCACCACCACCACCACTAG (2) pCDNA3.1-moRED-MitoH10 (expression of Mito-RFP-His₁₀):

(3) pCDNA3.1-moRED-ERH10 (expression of ER-RFP-His₁₀):

ATGCTGCTATCCGTGCCGTTGCTGCTCGGCCTCCTCGGCCTGGCCGTCGCCGGGG ATCCACCGGTCGCCACCATGGACAACACCGAGGACGTCATCAAGGAGTTCATGC AGTTCAAGGTGCGCATGGAGGGCTCCGTGAACGGCCACTACTTCGAGATCGAGG GCGAGGGCGAGGGCAAGCCCTACGAGGGCACCCAGACCGCCAAGCTGCAGGTGA CCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCCAGTA CGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACATGAAGCTG TCCTTCCCCGAGGGCTTCACCTGGGAGCGCTCCATGAACTTCGAGGACGGCGGCG TGGTGGAGGTGCAGCAGGACTCCTCCCTGCAGGACGGCACCTTCATCTACAAGGT GAAGTTCAAGGGCGTGAACTTCCCCGCCGACGGCCCCGTAATGCAGAAGAAGAC TGCCGGCTGGGAGCCCTCCACCGAGAAGCTGTACCCCCAGGACGGCGTGCTGAA GGGCGAGATCTCCCCACGCCAGAAGCTGTACCCCCAGGACGGCGTGCTGAA CTTCAAGACCGTGTACAAGGCCAAGAAGCCGTGCAGCTGCCCGGCAACCACTA CGTGGACTCCAAGCTGGACATCACCAACCACAACGAGGACTACACCGTGGTGGA GCAGTACGAGCACGCCGAGGCCCGCCACTCCGGCTCCCAGGGAAAGGACGAGCT GTAATAG

References

[1] C. Xing, Q. Xu, H. Tang, L. Liu, S. Wang, J. Am. Chem. Soc. 2009, 131, 13117-13124.

	PT/Ni ²⁺	PT/Tat-His ₆
Size (nm)	19±4	78±11
Zeta (mV)	-12±1	22±1

Table S1. Size and zeta potential distribution of PT/Ni²⁺ and PT/Tat-His₆.

Figure S1. The observed enthalpy changes (ΔH_{obs}) against the molar ratio of Ni²⁺/Tat-His₆ (R_{Ni}) for titrating Ni²⁺ (800 µM) into Tat-His₆ (200 µM).

Figure S2. Cell cytotoxicity of PT/Ni²⁺/Tat-His₆ complex. [PT/Ni²⁺/Tat-His₆] = $0 \sim 50 \mu$ M. The concentration of complex is quantified as that of PT.

Figure S3. CLSM images of HeLa cells incubated with $PT/Ni^{2+}/Tat-His_6$, PT, PT/Ni^{2+} and $PT/Tat-His_6$, respectively. $[PT] = [PT/Ni^{2+}] = [PT/Tat-His_6] = [PT/Ni^{2+}/Tat-His_6] = 10 \ \mu$ M. The concentration of complexes are quantified as PT concentration.

Figure S4. CLSM images of HeLa cells incubated with complex for 4 h after transfected with pCDNA3.1-moRED-GolgiH10 plasmid for 72 h followed by incubation with Lyso Tracker for 30 min. $[PT/Ni^{2+}/Tat-His_6] = 10 \ \mu M$, $[LysoTracker] = 1 \ \mu M$.

Figure S5. CLSM images of HeLa cells transfected by pCDNA3.1-moRED-GolgiH10 plasmid with the treatment of PT/Ni²⁺/Tat-His₆ complex. [PT/Ni²⁺/Tat-His₆] = 10 μ M. The false color of PT was green, and the false color of RFP was red.