Electronic Supplementary Information

Controlled synthesis of highly active Au/CeO₂ nanotubes for CO

oxidation

Zumin Wang^{ab†}, Jian Qi^{bde†}, Kun Zhao^{ab}, Lingbo Zong^a, Zhiyong Tang^{*b}, Lianzhou

Wang*c, Ranbo Yu*a

^a.Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China. Email: ranboyu@ustb.edu.cn

^bNational Center for Nanoscience and Technology, No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China. Email: zytang@nanoctr.cn

^cNanomaterials Center, School of Chemical Engineering and AIBN, University of Queensland, Queensland, 4072, Australia

^dState Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.

^{e.} University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China

[†] These authors contributed equally to this work

Figure S1. XRD patterns of samples with different crystallization time a: 5 min, b: 30 min, c: 4 h, d: 24 h, e: 72 h.

Figure S2. TEM image of CeO_2 nanorods synthesized without addition of P123

Figure S3. XPS spectra of O1s of CeO_2 and Au/CeO_2 nanotubes

Figure S4. TEM images of Au/CeO₂ nanotubes synthesized a) at room temperature or b) under heating at 80°C.

Figure S5. Catalytic stability of 1% Au/CeO₂ nanotubes.

Figure S6. XPS spectra of Au 4f of Au/CeO $_2$ nanotubes before and after catalytic test.