Electronic supplementary information (ESI)

Turning on the solid emission from non-emissive

2-aryl-3-cyanobenzofurans by tethering tetraphenylethene for green

electroluminescence

Zhixing Peng, Kai Huang, Yuhan Tao, Xihui Li, Lianpeng Zhang, Ping Lu*, Yanguang Wang*

Department of Chemistry, Zhejiang University, Hangzhou, P. R. China

Content

Figure S1 Emission of compound S1 in different water / THF1
Scheme S1 Design and synthesis of compound 1, 2, 3
Figure S2-S15 Copies of all compounds NMR Spectra3
Table S1 Crystal parameters of compound 1, 2, and 3 10
Figure S16 Powder XRD of compounds 1, 2, and 310
Figure S17 Emission and TEM of compound 2 in different kinds of complex10
Figure S18 TEM of compound 2 in different concentration11
Figure S19 The size distribution of nanoparticles of compound 1, 2, and 311
Figure S20 TEM of nanoparticles for compounds 1 in different water / THF11
Figure S21 TEM of nanoparticles for compounds 2 in different water / THF12
Figure S22 TEM of nanoparticles for compounds 3 in different water / THF12
Figure S23 Absorption of compound 1, 2, and 3 in different water / THF13
Figure S24 Normalized absorption spectra of compound 1, 2, and 3 in film14
Figure S25 Normalized emission spectra of compound 1, 2, and 3 at fw=95%14
Figure S26 XRD before and after grinding of compound 1, 2, and 314
Table S2 Fluorecent lifetime and relativity of compound 1, 2, and 3.15
Table S3 The detailed HOMO, LUMO, and energy gap of compounds 1, 2, and 315
Figure S27 Cyclic voltammograms of compounds 1, 2, and 316
Figure S28 Thermogravimetric Analysis of compounds 1, 2, and 3
Figure S29 AFM images compounds 1, 2, and 317
Figure S30 Voltage-Luminance and EQE of compounds 1, 2, and 317
References

Figure S1 Emission of compound **S1** in different water / THF (f_w). (a) The structure of **S1**, (b) 2D diagram of emission of compound **S1** at varying f_w , (c) 3D diagram of emission of compound **S1** at varying f_w , (d) FL Intensity of compound **S1** at varying f_w .

Scheme S1. Synthetic route of compound 1, 2, 3.

Compound **4** was prepared according to the reported procedure.¹ Compound **5**, **6**, and **7** were prepared according to the reported procedure.²

2-(4-(1,2,2-Triphenylvinyl)phenyl)acetonitrile (4)

White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.11-7.06 (m, 9H), 7.04-6.99 (m, 10H), 3.63 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 143.4, 143.4, 143.3, 131.2, 131.2, 131.2, 127.8, 127.7, 127.6, 117.8, 23.3.

4-Hydroxy-4'-methoxy-[1,1'-biphenyl]-3-carbaldehyde (5)

White solid. ¹H NMR (400 MHz, CDCl₃): δ 10.96 (s, 1H), 9.93 (s, 1H), 7.72-7.67 (m, 2H), 7.48-7.44 (m, 2H), 7.04 (d, *J* = 8.8 Hz, 1H), 6.98-6.95 (m, 2H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 196.7, 160.4, 159.1, 135.4, 133.0, 131.8, 131.3, 127.6, 120.6, 118.0, 114.3, 55.3.

3-Hydroxy-4'-methoxy-[1,1'-biphenyl]-4-carbaldehyde (6)

White solid. ¹H NMR (400 MHz, CDCl₃): δ 11.14 (s, 1H), 9.89 (s, 1H), 7.61-7.57 (m, 3H), 7.24-7.18 (m, 2H), 7.02-6.98 (m, 2H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 195.8, 162.0, 160.4, 149.4, 134.1, 131.6, 128.5, 119.1, 118.3, 115.0, 114.4, 55.4.

2-Hydroxy-4'-methoxy-[1,1'-biphenyl]-3-carbaldehyde (7)

Light green solid, mp 73.8-74.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 11.53 (s, 1H), 9.94 (s, 1H), 7.59 (dd, J_1 = 7.6 Hz, J_2 = 1.6 Hz, 1H), 7.56-7.52 (m, 3H), 7.09 (t, J = 7.6 Hz, 1H), 7.01-6.97 (m, 2H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 196.9, 159.2, 158.8, 137.5, 132.7, 130.4, 130.1, 128.6, 120.8, 119.9, 113.8, 55.3. HRMS (EI-TOF): cacld. for C₁₄H₁₂O₃ [M⁺], 228.0786; found: 228.0789. IR: 3039, 2837, 1658, 1610, 1515, 1441, 1388, 1285, 1246, 1217, 1182, 1032, 915, 831, 788, 752, 678 cm⁻¹.

Copies of all compounds NMR Spectra

Figure S5 ¹³C NMR spectrum of compound 5

Figure S11 ¹³C NMR spectrum of compound 1

Figure S13 ¹³C NMR spectrum of compound 2

Figure S15 ¹³C NMR spectrum of compound 3

Compounds	1	2	3	
Formula	$C_{42}H_{29}NO_2$	$C_{42}H_{29}NO_2$	$C_{42}H_{29}NO_2$	
a [Å]	18.2932	9.4456	9.4088	
b [Å]	19.3313	9.9577	11.4520	
c [Å]	9.1613	16.2906	15.1598	
[deg]	90	102.183	90.309	
[deg]	103.67	93.914	105.929	
[deg]	90	93.086	93.468	
Z	4	2	2	
V [ų]	3148.0	1490.57	1567.45	
D [g cm ⁻³]	1.223	1.292	1.228	
Space group	P 1 21/c 1	P -1	P -1	
[mm ⁻¹]	0.074	0.079	0.075	
R [b]	0.0593	0.0844	0.0502	
wR [c]	0.1674	0.1896	0.1273	

Table S1 Crystal parameters of compound 1, 2, 3.

Figure S16 Powder XRD of compounds 1 (a), 2 (b), 3 (c).

Figure S17 Fluorescence spectra and TEM images of compound **2** in different kinds of complex, the concentration is 2×10^{-5} mol/L. (a) Emission of compound **2** in different complex (fp = 95%, p = Poor solvent), (b) 2 in Water / THF (fw = 95%, scale bar = 500 nm), (c) 2 in Water / Acetonitrile, (fw = 95%, scale bar = 200 nm).

Figure S18 TEM images of compound **2** in Water / THF (fw = 95%), the concentration is different. (a) $C = 2 \times 10^{-5}$ mol/L, scale bar = 500 nm; (b) $C = 1 \times 10^{-4}$ mol/L, scale bar = 1 µm; (c) $C = 1 \times 10^{-3}$ mol/L, scale bar = 2 µm.

Figure S19 The size distribution of nanoparticles in different water / THF (fw) by DLS. (a) nano-particles size distribution of compounds **1**, (b) nano-particles size distribution of compounds **2**, (c) nano-particles size distribution of compounds **3**.

Figure S20 TEM images of nanoparticles for compounds **1** in different water / THF (fw) and the concentration is 2×10^{-5} mol/L. (a) fw = 95%, (b) fw = 85%, (c) fw = 80%. Scale bar = 200nm.

Figure S21 TEM images of nanoparticles for compounds **2** in different water / THF (fw) and the concentration is 2×10^{-5} mol/L. (a) fw = 95%, (b) fw = 85%, (c) fw = 80%. Scale bar = 500 nm.

Figure S22 TEM images of nanoparticles for compounds **3** in different water / THF (fw) and the concentration is 2×10^{-5} mol/L. (a) fw = 95%, (b) fw = 85%, (c) fw = 80%. Scale bar = 1 μ m.

Figure S23 Absorption of compound **1**, **2**, **3** in different water / THF (fw). (a), (c), (e) 2D diagram of absorption of compound **1**, **2**, **3** at varying f_w , respectively; (b), (d), (f) 3D diagram of absorption of compound **1**, **2**, **3** at varying f_w , respectively.

Figure S24 Normalized absorption spectra of compound 1, 2, 3 in film.

Figure S25 Normalized emission spectra of compound 1, 2, 3 at fw=95%.

Figure S26 XRD before and after grinding of compound **1**, **2**, **3**. (a) compound **1**, (b) compound **2**, (c) compound **3**.

compound	fw	τ1/ns	Rel/%	τ2/ns	Rel/%
	75	0.5582	84.96	2.3842	15.04
1	80	0.7373	76.95	2.4656	23.05
	85	0.9780	68.06	2.8505	31.94
	90	1.3840	67.82	3.8191	32.18
	95	1.4166	63.36	3.3480	36.54
	75	0.5220	91.37	2.4847	8.63
	80	0.7436	75.98	2.1520	24.02
2	85	1.1715	64.72	2.5484	35.28
	90	1.2575	40.43	2.7097	59.57
	95	1.5457	47.85	3.0927	52.15
	75	0.7144	31.91	3.0758	68.09
	80	0.7643	67.16	2.9860	32.84
3	85	0.9984	58.69	3.1650	41.43
	90	1.3936	57.98	3.6015	42.02
	95	1.5320	55.13	3.5503	44.87

Table S2 Fluorecent lifetime and relativity of compound 1, 2, 3.

	НОМО			LUMO			Eg						
Compo und	CV ^a (eV)	CV ^b (eV)	Calc d ^c (eV)	Calc d ^d (eV)	CV ^e (eV)	CV ^f (eV)	Calc d ^g (eV)	Calc d ^h (eV)	CV ⁱ (eV)	CV ^j (eV)	Calc d ^k (eV)	Cal cd ⁱ (eV)	UV m (eV)
1	-5.9	-5.8	-5.6	-5.8	-2.7	-2.7	-2.3	-1.9	3.1	3.0	3.3	3.8	3.4
	07	37	91	73	11	43	28	80	96	94	63	93	19
2	5.8	-5.7	-5.6	-5.6	-2.7	-2.7	-2.3	-2.0	3.1	3.0	3.3	3.6	3.3
	87	98	35	71	05	62	25	35	82	36	10	36	46
3	-5.9	-5.7	-5.6	-5.7	-2.6	-2.7	-2.3	-2.0	3.2	2.9	3.3	3.6	3.4
	21	11	83	28	77	46	10	48	44	65	73	80	87

^a Potentials vs reference electrode SCE, working electrode glassy carbon, auxiliary electrode Pt, c = 2×10^{-3} mol/L, 0.1 M Bu₄N⁺PF₆⁻-MeCN, scan rate 100 mV/s, HOMO = E_{ref} - E_{ox (peak potential)}. ^b The onset being defined as the potential at which 20% of the current value at the peak potential was reached,³ HOMO = E_{ref} - E_{ox-(onset potential)}. ^C Obtained from DFT using the B₃LYP functional and the 6-31G* basis set. ^d Theoretical calculations were done with their crystal structures without any structure optimization using the B₃LYP functional and the 6-31G* basis set. ^e LUMO= E_{ref} - E_{red (peak} potential). ^f LUMO= E_{ref} - E_{red (onset potential)}. ^g Obtained from DFT using the B₃LYP functional and the 6-31G* basis set. ^h Theoretical calculations were done with their crystal structures without any structure optimization using the B₃LYP functional and the 6-31G* basis set. ^e LUMO= E_{ref} - E_{red (peak} potential). ^f LUMO= E_{ref} - E_{red (onset potential)}. ^g Obtained from DFT using the B₃LYP functional and the 6-31G* basis set. ^h Theoretical calculations were done with their crystal structures without any structure optimization using the B₃LYP functional and the 6-31G* basis set. ⁱ E_g = HOMO (CV^a) -LUMO (CV^e). ^j E_g = HOMO (CV^b) - LUMO (CV^f). ^k E_g = HOMO (Calcd^c) - LUMO (Calcd^g). ^l E_g = HOMO (Calcd^d) - LUMO (Calcd^h). ^m E_g = 1241 / $\lambda_{(UV peak)}$.

Table S3 The detailed HOMO, LUMO, and energy gap of compounds 1, 2, and 3.

Figure S27 Cyclic voltammograms of compounds **1**, **2**, and **3**. (a), (c), (e) only negative voltage part of compound **1**, **2**, **3** respectively, (b), (d), (f) whole CV curve of compound **1**, **2**, **3** respectively.

Figure S28 Thermogravimetric Analysis (TGA) of compounds 1, 2, and 3. Black, blue, red line represents compound 1, 2, 3, respectively.

Figure S29 AFM images compounds 1 (a), 2 (b), 3 (c)

Figure S30 Voltage–luminance and EQE. (a) Voltage – Luminance curve, (b) Voltage – EQE curve. **1**, **2**, **3** represents compound **1**, **2**, **3**, respectively.

References

1. Q. Y. Lu, X. F. Li, J. Li, Z. Y. Yang, B. J. Xu, Z. G. Chi, J. R. Xu and Y. Zhang, *J. Mater. Chem. C*, 2015, **3**, 1225–1234.

2. F. Minutolo, R. Bellini, S. Bertini, I. Carboni, A. Lapucci, L. Pistolesi, G. Prota, S. Rapposelli, F. Solati, T. Tuccinardi, A. Martinelli, F. Stossi, K. E. Carlson, B. S. Katzenellenbogen, J. A. Katzenellenbogen and M. Macchia, *Journal of Medicinal Chemistry*, 2008, **51**, 1344-1351.

3. F. Maillar, A. Bonnefont, M. Chatenet, L. Guetaz, B. Doisneau-Cottignies, H. Roussel, U. Stimming, *Electrochimica Acta*, 2007, **53**, 811–822.