Supplementary Information

A flexible thioether-based MOF as the crystalline sponge for structural characterization of liquid organic molecules

Xin-Yu Yang,^b Shuai Yuan,^b Jun-Sheng Qin,^b Christina Lollar,^b Ali Alsalme*^a and Hong-Cai Zhou*^{a,b}

a. Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia. E-mail: aalsalme@ksu.edu.sa.

b. Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States. E-mail: zhou@chem.tamu.edu.

S1. Materials and instrumentation

1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene, 4-mercaptopyridine were purchased from Tokyo Chemical Industry Co., LTD. Cuprous iodide (CuI), N,Ndimethylacetamide (DMA), *N*,*N*-dimethylformamide (DMF), acetonitrile (CH₃CN), *N*-Methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), benzaldehyde (PhCHO) were purchased from Alfa Aesar. All commercial chemicals were used without further purification unless otherwise mentioned. ¹H Nuclear magnetic resonance (NMR) data of L were collected on a Mercury 300 spectrometer (CDCl₃). Powder X-ray diffraction (PXRD) was carried out with a BRUKER D8-Focus Bragg-Brentano Xray Powder Diffractometer equipped with a Cu sealed tube ($\lambda = 1.54178$ Å) at 40 kV and 40 mA.

S2. Synthesis of PCN-41·2DMA

S2.1 The synthesis of L

1,3,5-tris-(bromomethyl)-2,4,6-trimethylbenzene (1.2 g, 3 mmol) was added to an icecooled solution of 4-mercaptopyridine (1 g, 9 mmol) and KOH (1.68 g, 30 mmol) in methanol whilst stirring. The mixture was heated at reflux for 48 h at 80 °C. The solution was poured into ice-cold water, the crude product (L) was filtered, dried and the white solid was obtained.

S2.2 The synthesis of PCN-41 2DMA

L (20 mg), CuI (10 mg), hydroiodic acid (3 drops), DMA (2.25 mL) and H_2O (0.75 mL) were charged in a 4 mL Pyrex vial. The mixture was heated in 75 °C oven for 48 h. After cooling to room temperature, yellow, needle like crystals were harvested.

S3. The sponge-like study of PCN-41·2DMA

After the immersion of as-synthesized PCN-41·2DMA (10 mg) in DMF (4 mL) at room temperature overnight, PCN-41·DMF was obtained. With the replacement of DMF by CH₃CN, NMP, DMSO or PhCHO, PCN-41·2CH₃CN, PCN-41·2NMP, PCN-41·2DMSO or PCN-41·PhCHO were produced, respectively, as confirmed by single-crystal X-ray diffraction analysis (Table S1).

S4. Single crystal X-ray crystallography

All crystals were taken from the mother liquid without further treatment, transferred to oil and mounted into a loop for single crystal X-ray data collection. Diffraction was measured on a Bruker Smart Apex diffractometer equipped with a Mo- K_{α} ($\lambda =$ 0.71073 Å, graphite monochromated) or Cu- K_{α} ($\lambda =$ 1.54184 Å, graphite monochromated) sealed-tube X-ray source. The data frames were recorded using the program APEX2 and processed using the program SAINT routine within APEX2.¹ The data were corrected for absorption and beam corrections based on the multi-scan technique as implemented in SADABS. The structures were solved by direct method using SHELXS and refined by full-matrix least-squares on F^2 using SHELXL software.² The crystallographic data were presented in Table S1. CCDC numbers: 1541830-1541835.

	PCN-41·2DMA	PCN-41 · DMF	PCN-41·2CH ₃ CN
Empirical formula	$C_{35}H_{45}Cu_2I_2N_5O_2S_3$	$C_{30}H_{34}Cu_2I_2N_4OS_3$	$C_{31}H_{33}Cu_{2}I_{2}N_{5}S_{3} \\$
	$[Cu_2I_2][C_{27}H_{27}N_3S_3][(C_4H_9NO)_2]$	$[Cu_2I_2][C_{27}H_{27}N_3S_3][(C_3H_7NO)]$	$[Cu_2I_2][C_{27}H_{27}N_3S_3][(CH_3CN)_2]$
$M_{ m w}$	1044.82	943.67	952.68
Crystal system	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a (Å)	9.252(4)	9.174(6)	8.962(3)
<i>b</i> (Å)	14.347(7)	14.442(10)	14.515(4)
c (Å)	17.158(8)	17.023(11)	16.577(5)
α (°)	113.914(6)	113.404(8)	112.653(3)

Table S1. Crystal data and structure refinements

β (°)	91.450(6)	90.013(8)	91.205(4)
γ (°)	99.705(5)	99.203(8)	98.338(3)
$V(Å^3)$	2041.1(16)	2038(2)	1962.1(10)
Ζ	2	2	2
$D_{\rm c}({\rm Mg}\cdot{\rm m}^{-3})$	1.700	1.538	1.612
Abs. coeff. (mm ⁻¹)	2.745	2.737	2.843
R _{int}	0.0306	0.0608	0.0357
<i>F</i> (000)	1036	924	932
reflns collected	12881	21299	22983
Radiation	Μο-Κ _α	Mo- K_{α}	Mo- K_{α}
Independent reflns	8829	8016	9152
GOF on F^2	1.078	1.053	1.025
$R_1 [I > 2\sigma(I)]^a$	0.0625	0.0643	0.0474
$wR_2 [I > 2\sigma(I)]^a$	0.1806	0.1914	0.1371
R_1 (all data) ^b	0.1014	0.0977	0.0657
wR_2 (all data) ^b	0.2102	0.2156	0.1490
	PCN-41·2NMP	PCN-41·2DMSO	PCN-41 · PhCHO
Empirical formula	PCN-41 · 2NMP C ₃₇ H ₄₃ Cu ₂ I ₂ N ₅ O ₂ S ₃	PCN-41·2DMSO C ₃₁ H ₃₉ Cu ₂ I ₂ N ₃ O ₂ S ₅	PCN-41 · PhCHO C ₃₄ H ₃₃ Cu ₂ I ₂ N ₃ OS ₃
Empirical formula	$\begin{array}{l} PCN-41\cdot 2NMP \\ C_{37}H_{43}Cu_2I_2N_5O_2S_3 \\ \\ [Cu_2I_2][C_{27}H_{27}N_3S_3][(C_5H_8NO)_2] \end{array}$	$\begin{array}{c} PCN\text{-}41 \cdot 2DMSO \\ \\ C_{31}H_{39}Cu_2I_2N_3O_2S_5 \\ \\ \\ [Cu_2I_2][C_{27}H_{27}N_3S_3][(C_2H_6SO)_2] \end{array}$	PCN-41 · PhCHO C ₃₄ H ₃₃ Cu ₂ I ₂ N ₃ OS ₃ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₇ H ₆ O)]
Empirical formula	PCN-41·2NMP C ₃₇ H ₄₃ Cu ₂ I ₂ N ₅ O ₂ S ₃ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₅ H ₈ NO) ₂] 1066.82	$\begin{array}{c} PCN-41 \cdot 2DMSO \\ C_{31}H_{39}Cu_2I_2N_3O_2S_5 \\ [Cu_2I_2][C_{27}H_{27}N_3S_3][(C_2H_6SO)_2] \\ 1026.83 \end{array}$	PCN-41 · PhCHO C ₃₄ H ₃₃ Cu ₂ I ₂ N ₃ OS ₃ [Cu ₂ I ₃][C ₂₇ H ₂₇ N ₃ S ₃][(C ₇ H ₆ O)] 970.64
Empirical formula <i>M</i> _w Crystal system	PCN-41·2NMP C ₃₇ H ₄₃ Cu ₂ I ₂ N ₅ O ₂ S ₃ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₃ H ₈ NO) ₂] 1066.82 Triclinic	PCN-41·2DMSO C ₃₁ H ₃₉ Cu ₂ I ₂ N ₃ O ₂ S ₅ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₂ H ₆ SO) ₂] 1026.83 Triclinic	PCN-41 · PhCHO C ₃₄ H ₃₃ Cu ₂ I ₂ N ₃ OS ₃ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₇ H ₆ O)] 970.64 Triclinic
Empirical formula <i>M</i> _w Crystal system Space group	PCN-41·2NMP C ₃₇ H ₄₃ Cu ₂ I ₂ N ₅ O ₂ S ₃ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₃ H ₈ NO) ₂] 1066.82 Triclinic <i>P</i> -1	PCN-41·2DMSO C ₃₁ H ₃₉ Cu ₂ I ₂ N ₃ O ₂ S ₅ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₂ H ₆ SO) ₂] 1026.83 Triclinic <i>P</i> -1	PCN-41 · PhCHO C ₃₄ H ₃₃ Cu ₂ I ₂ N ₃ OS ₃ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₇ H ₆ O)] 970.64 Triclinic <i>P</i> -1
Empirical formula <i>M</i> _w Crystal system Space group <i>a</i> (Å)	PCN-41·2NMP C ₃₇ H ₄₃ Cu ₂ I ₂ N ₅ O ₂ S ₃ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₃ H ₈ NO) ₂] 1066.82 Triclinic <i>P</i> -1 9.102(3)	PCN-41·2DMSO C ₃₁ H ₃₉ Cu ₂ I ₂ N ₃ O ₂ S ₅ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₂ H ₆ SO) ₂] 1026.83 Triclinic <i>P</i> -1 9.353(6)	PCN-41·PhCHO C ₃₄ H ₃₃ Cu ₂ I ₂ N ₃ OS ₃ [Cu ₂ I ₃][C ₂₇ H ₂₇ N ₃ S ₃][(C ₇ H ₆ O)] 970.64 Triclinic <i>P</i> -1 9.4203(6)
Empirical formula <i>M</i> _w Crystal system Space group <i>a</i> (Å) <i>b</i> (Å)	PCN-41·2NMP $C_{37}H_{43}Cu_2I_2N_5O_2S_3$ $[Cu_2I_2][C_{27}H_{27}N_3S_3][(C_3H_8NO)_2]$ 1066.82 Triclinic <i>P</i> -1 9.102(3) 14.511(4)	PCN-41·2DMSO C ₃₁ H ₃₉ Cu ₂ I ₂ N ₃ O ₂ S ₅ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₂ H ₆ SO) ₂] 1026.83 Triclinic <i>P</i> -1 9.353(6) 14.189(9)	PCN-41·PhCHO C ₃₄ H ₃₃ Cu ₂ I ₂ N ₃ OS ₃ [Cu ₂ I ₃][C ₂₇ H ₂₇ N ₃ S ₃][(C ₇ H ₆ O)] 970.64 Triclinic <i>P</i> -1 9.4203(6) 14.3226(9)
Empirical formula <i>M</i> _w Crystal system Space group <i>a</i> (Å) <i>b</i> (Å) <i>c</i> (Å)	PCN-41·2NMP $C_{37}H_{43}Cu_2I_2N_5O_2S_3$ $[Cu_2I_2][C_{27}H_{27}N_3S_3][(C_3H_8NO)_2]$ 1066.82 Triclinic <i>P</i> -1 9.102(3) 14.511(4) 17.160(5)	PCN-41·2DMSO C ₃₁ H ₃₉ Cu ₂ I ₂ N ₃ O ₂ S ₅ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₂ H ₆ SO) ₂] 1026.83 Triclinic <i>P</i> -1 9.353(6) 14.189(9) 17.257(10)	PCN-41·PhCHO C ₃₄ H ₃₃ Cu ₂ I ₂ N ₃ OS ₃ [Cu ₂ I ₃][C ₂₇ H ₂₇ N ₃ S ₃][(C ₇ H ₆ O)] 970.64 Triclinic <i>P</i> -1 9.4203(6) 14.3226(9) 17.3309(12)
Empirical formula M _w Crystal system Space group a (Å) b (Å) c (Å) a (°)	PCN-41·2NMP $C_{37}H_{43}Cu_2I_2N_5O_2S_3$ $[Cu_2I_2][C_27H_27N_3S_3][(C_3H_8NO)_2]$ 1066.82Triclinic $P-1$ 9.102(3)14.511(4)17.160(5)66.114(3)	PCN-41·2DMSO C ₃₁ H ₃₉ Cu ₂ I ₂ N ₃ O ₂ S ₅ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₂ H ₆ SO) ₂] 1026.83 Triclinic <i>P</i> -1 9.353(6) 14.189(9) 17.257(10) 113.336(7)	PCN-41·PhCHO C ₃₄ H ₃₃ Cu ₂ I ₂ N ₃ OS ₃ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₇ H ₆ O)] 970.64 Triclinic <i>P</i> -1 9.4203(6) 14.3226(9) 17.3309(12) 65.977(3)
Empirical formula M_w Crystal system Space group a (Å) b (Å) c (Å) a (°) β (°)	PCN-41·2NMP $C_{37}H_{43}Cu_2I_2N_5O_2S_3$ $[Cu_2I_2][C_27H_27N_3S_3][(C_3H_8NO)_2]$ 1066.82Triclinic $P-1$ 9.102(3)14.511(4)17.160(5)66.114(3)88.537(4)	PCN-41·2DMSO $C_{31}H_{39}Cu_2I_2N_3O_2S_5$ $[Cu_2I_2][C_27H_27N_3S_3][(C_2H_6SO)_2]$ 1026.83Triclinic $P-1$ 9.353(6)14.189(9)17.257(10)113.336(7)94.402(7)	PCN-41·PhCHO C ₃₄ H ₃₃ Cu ₂ I ₂ N ₃ OS ₃ [Cu ₂ I ₂][C ₂₇ H ₂₇ N ₃ S ₃][(C ₇ H ₆ O)] 970.64 Triclinic <i>P</i> -1 9.4203(6) 14.3226(9) 17.3309(12) 65.977(3) 77.856(3)
Empirical formula M_w Crystal system Space group a (Å) b (Å) c (Å) a (°) β (°) γ (°)	PCN-41·2NMP $C_{37}H_{43}Cu_2I_2N_5O_2S_3$ $[Cu_2I_2][C_27H_27N_3S_3][(C_3H_8NO)_2]$ 1066.82Triclinic $P-1$ 9.102(3)14.511(4)17.160(5)66.114(3)88.537(4)80.515(4)	PCN-41·2DMSO $C_{31}H_{39}Cu_2I_2N_3O_2S_5$ $[Cu_2I_2][C_27H_27N_3S_3][(C_2H_6SO)_2]$ 1026.83Triclinic $P-1$ 9.353(6)14.189(9)17.257(10)113.336(7)94.402(7)100.137(7)	PCN-41·PhCHO $C_{34}H_{33}Cu_2I_2N_3OS_3$ $[Cu_3I_2][C_27H_27N_3S_3][(C7H_6O)]$ 970.64Triclinic $P-1$ 9.4203(6)14.3226(9)17.3309(12)65.977(3)77.856(3)79.467(3)
Empirical formula M_w Crystal system Space group a (Å) b (Å) c (Å) a (°) β (°) γ (°) V (Å ³)	PCN-41·2NMP $C_{37}H_{43}Cu_2I_2N_5O_2S_3$ $[Cu_2I_2][C_27H_27N_3S_3][(C_3H_8NO)_2]$ 1066.82Triclinic $P-1$ 9.102(3)14.511(4)17.160(5)66.114(3)88.537(4)80.515(4)2042.1(10)	PCN-41·2DMSO $C_{31}H_{39}Cu_2I_2N_3O_2S_5$ $[Cu_2I_2][C_27H_27N_3S_3][(C_2H_6SO)_2]$ 1026.83Triclinic $P-1$ 9.353(6)14.189(9)17.257(10)113.336(7)94.402(7)100.137(7)2043(2)	PCN-41·PhCHO $C_{34}H_{33}Cu_2I_2N_3OS_3$ $[Cu_3I_2][C_27H_27N_3S_3][(C7H_6O)]$ 970.64Triclinic $P-1$ 9.4203(6)14.3226(9)17.3309(12)65.977(3)77.856(3)79.467(3)2075.6(2)
Empirical formula M_w Crystal system Space group a (Å) b (Å) c (Å) a (°) β (°) γ (°) V (Å ³) Z	PCN-41·2NMP $C_{37}H_{43}Cu_2I_2N_5O_2S_3$ $[Cu_2I_2][C_27H_27N_3S_3][(C_3H_8NO)_2]$ 1066.82Triclinic $P-1$ 9.102(3)14.511(4)17.160(5)66.114(3)88.537(4)80.515(4)2042.1(10)2	PCN-41·2DMSO $C_{31}H_{39}Cu_2I_2N_3O_2S_5$ $[Cu_3L_3][C_27H_27N_3S_3][(C_2H_6SO)_3]$ 1026.83Triclinic $P-1$ 9.353(6)14.189(9)17.257(10)113.336(7)94.402(7)100.137(7)2043(2)2	PCN-41·PhCHO $C_{34}H_{33}Cu_2I_2N_3OS_3$ $[Cu_3I_2][C_{27}H_{27}N_3S_3][(C_7H_6O)]$ 970.64Triclinic $P-1$ 9.4203(6)14.3226(9)17.3309(12)65.977(3)77.856(3)79.467(3)2075.6(2)2
Empirical formula M_w Crystal system Space group a (Å) b (Å) c (Å) a (°) β (°) γ (°) V (Å ³) Z D_c (Mg·m ⁻³)	PCN-41·2NMP $C_{37}H_{43}Cu_2I_2N_5O_2S_3$ $[Cu_2L_2][C_27H_27N_3S_3][(C_3H_8NO)_2]$ 1066.82Triclinic $P-1$ 9.102(3)14.511(4)17.160(5)66.114(3)88.537(4)80.515(4)2042.1(10)21.735	PCN-41·2DMSO $C_{31}H_{39}Cu_2I_2N_3O_2S_5$ $[Cu_3L_2][C_27H_27N_3S_3][(C_2H_6SO)_2]$ 1026.83Triclinic $P-1$ 9.353(6)14.189(9)17.257(10)113.336(7)94.402(7)100.137(7)2043(2)21.669	PCN-41·PhCHO $C_{34}H_{33}Cu_2I_2N_3OS_3$ $[Cu_3I_2][C_{27}H_{27}N_3S_3][(C_7H_6O)]$ 970.64Triclinic $P-1$ 9.4203(6)14.3226(9)17.3309(12)65.977(3)77.856(3)79.467(3)2075.6(2)21.553
Empirical formula M_w Crystal systemSpace group a (Å) b (Å) c (Å) a (°) β (°) γ (°) V (Å3) Z D_c (Mg·m ⁻³)Abs. coeff. (mm ⁻¹)	PCN-41·2NMP $C_{37}H_{43}Cu_2I_2N_5O_2S_3$ $[Cu_2I_2][C_27H_27N_3S_3][(C_3H_3NO)_2]$ 1066.82Triclinic $P-1$ 9.102(3)14.511(4)17.160(5)66.114(3)88.537(4)80.515(4)2042.1(10)21.7352.745	PCN-41·2DMSO $C_{31}H_{39}Cu_2I_2N_3O_2S_5$ $[Cu_3L_2][C_27H_27N_3S_3][(C_2H_6SO)_2]$ 1026.83Triclinic $P-1$ 9.353(6)14.189(9)17.257(10)113.336(7)94.402(7)100.137(7)2043(2)21.6692.838	PCN-41·PhCHO $C_{34}H_{33}Cu_2I_2N_3OS_3$ $[Cu_3I_2][C_{27}H_{27}N_3S_3][(C_7H_6O)]$ 970.64Triclinic $P-1$ 9.4203(6)14.3226(9)17.3309(12)65.977(3)77.856(3)79.467(3)2075.6(2)21.55314.564

<i>F</i> (000)	1056	1012	944
Radiation	Mo- <i>K</i> _a	Μο-Κ _α	Cu- <i>K</i> _a
reflns collected	11836	19791	32396
Independent reflns	7210	8323	6941
GOF on F^2	1.026	1.062	1.059
$R_1 [I > 2\sigma(I)]^a$	0.0411	0.0655	0.0688
$wR_2 [I > 2\sigma(I)]^a$	0.0964	0.1788	0.2128
R_1 (all data) ^b	0.0568	0.1182	0.0892
wR_2 (all data) ^b	0.1050	0.2093	0.2592

 ${}^{\mathbf{a}}R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|. \ {}^{\mathbf{b}} wR_2 = |\Sigma \mathbf{w}(|F_o|^2 - |F_c|^2)| / \Sigma |\mathbf{w}(F_o^2)^2|^{1/2}.$

Fig. S1 The ¹H NMR spectrum of L.

Fig. S2 The 2D (4,4)-connected topology of PCN-41·2DMA.

Fig. S3 The AAA sequences of adjacent layers viewed along the *b*-axis direction: (a) PCN-41·2DMA, (b) PCN-41·DMF, (c) PCN-41·2CH₃CN, (d) PCN-41·2NMP, (e) PCN-41·2DMSO, and (f) PCN-41·PhCHO. All the hydrogen atoms and solvent molecules were omitted for clarity.

Fig. S4 The PXRD pattern of as-synthesized PCN-41·2DMA (*red*) and the simulated one from X-ray diffraction data (*black*).

References

- APEX2 v2012.2.0 and SAINT v7.68A data collection and data processing programs, respectively. Bruker Analytical X-ray Instruments, Inc., Madison, WI; SADABS v2008/1 semi-empirical absorption and beam correction program. Sheldrick, G. M., University of Göttingen, Germany.
- 2 Sheldrick, G. M. *SHELXTL*, Version 6.14, Structure Determination Software Suite, Bruker AXS, Madison, WI, 2003.