Supporting Information

Controlling Solid-State Optical Properties of

Stimuli Responsive Dimethylamino-Substituted

Dibenzoylmethane Materials

Tristan Butler, ^a Fang Wang, ^a Michal Sabat^{a,b}, Cassandra L. Fraser^{a,*}

^{*a*} Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States

^b Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, Virginia, 22904, United States

*Corresponding Author: <u>fraser@virginia.edu</u>

Scheme S1. Synthesis of dimethylamino (DMA) substituted diketones.

Synthesis of β -Diketones. The β -diketones were synthesized by Claisen condensation with NaH using a previously described method¹ involving 1-(4-

(dimethylamino)phenyl)ethan-1-one) and the corresponding para substituted esters.

DMA-F. After recrystallization from 1:1 hexanes/EtOAc (2x), a yellow powder was

obtained: 1.215g (37%). ¹H NMR (600 MHz, DMSO-d6) δ 17.59 (s, 1H, ArCOH) 8.17-

8.15 (t, 2H, J = 12, 2"-ArH) 8.00 (d, 2H, J = 6, 2'-ArH) 7.33 (t, 2H, J = 12, 3"-ArH) 7.11 (s, 1H, COCHCO) 6.74 (d, 2H, J = 6, 3'-ArH) 2.97 (s, 6H, N(CH₃)₂) HRMS (ESI, TOF): m/z calculated for C₁₇H₁₇NO₂F 286.1243; found 286.1251 [M+H].

DMA-Br. After recrystallization from 1:1 hexanes/EtOAc (2x), a yellow powder was

obtained: 0.420 g (34%). ¹H NMR (600 MHz, DMSO-d6) δ 17.53 (s, 1H, ArCOH),

8.03-7.99 (m, 4H, 2"-ArH, 3"-ArH), 7.72 (d, 2H, J = 6, 2'-ArH) 7.14 (s, 1H, COCHCO)

6.75 (d, 2H, 3'-ArH), 3.03 (s, 6H, N(CH₃)₂) HRMS (ESI, TOF): m/z calculated for C₁₈H₁₇N₂O₂Br 346.0443; found 346.0445 [M+H].

DMA-I. After recrystallization from 1:1 hexanes/EtOAc (2x), a yellow powder was obtained: 0.843g (39%). ¹H NMR (600 MHz, CDCl₃) δ 17.07 (s, 1H, ArCOH) 7.92 (d, 2H, J = 6, 3"-ArH) 7.80 (d, 2H, 2'-ArH) 7.66 (d, 2H, J = 6, 2"-ArH) 6.81 (d, 2H, J = H, 3'-ArH) 3.08 (s, 6H, N(CH₃)₂) HRMS (ESI, TOF): m/z calculated for C₁₇H₁₇NO₂I 394.0306; found 394.0304 [M+H].

DMA-CF_{3.} After recrystallization from 1:1 hexanes/EtOAc (2x), a yellow powder was obtained: 1.020 g, (46%). ¹H NMR (600 MHz, CDCl₃) δ 17.10 (s, 1H, ArCOH), 8.04 (d, 2H, J = 6, 2'-ArH), 7.92 (d, 2H, J = 6, 3"-ArH), 7.71 (d, 2H, J = 6, 2"-ArH), 6.75 (s, 1H, COCHCO), 6.69 (d, 2H, J = 6, 3'-ArH), 3.07 (s, 6H, N(CH₃)₂) HRMS (ESI, TOF): m/z calculated for C₁₈H₁₇F₃NO₂ 336.1211; found 336.1212 [M+H].

DMA-COOMe. The dye was passed through a silica column with 9:1 hexanes/EtOAc and recrystallized from 1:1 hexanes/EtOAc (2x). An orange powder was obtained: 0.321 g, (32%) ¹H NMR (600 MHz, DMSO-d6) δ 17.46 (s, 1H, ArCOH), 8.19 (d, 2H, J = 6, 2"-ArH), 8.04-8.00 (m, 4H, 2'-ArH, 3'-ArH), 7.20 (s, 1H, COCHCO), 6.75 (d, 2H, J = 9,

2"-ArH) 3.85 (s, 3H, OCH₃) 3.05 (s, 6H, N(CH₃)₂) HRMS (ESI, TOF): m/z calculated for C₁₉H₂₀NO₄Br 326.1392; found 326.1404 [M+H].

Full Computational Details

All compounds were modeled using the Gaussian 09 suite of programs² utilizing density functional theory (DFT). The ground state optimization of the ligands was done using the basis set B3LYP/6-311+G(d) to simulate all atoms with the exception of I, where B3LYP/SDD was used. The vibrational frequencies were calculated in an additional calculation also utilizing B3LYP/6-31G(d), and all vibrational frequencies were positive assuring that the geometries were at least a local minimum. Single point energy calculations were used to generate the molecular orbital diagrams utilizing B3LYP/6-31G(d) for all atoms except I, where B3LYP/SDD. Molecular orbitals were depicted by GaussView software. Absorption spectra at the optimized geometry were estimated using time-dependent density functional theory, TD-B3LYP/6-311+G(d) for all but I atoms, which employed B3LYP/SDD. A Tomasi polarized continuum for dichloromethane solvent was used for all calculations.⁴ Cartesian Coordinates are given in Angstroms.

DMA-OMe	Occupied Orbitals	Unoccupied Orbitals
OH O N I	номо	LUMO
24544		

E(TD-HF/TD-KS) = -977.90956420 a.u. Dipole Moment = 7.0832 Debye

С	4.11607 1.10281 -0.17292
С	5.34217 0.43899 -0.19673
С	5.38049 -0.94766 0.01789
С	4.18334 -1.64708 0.25215
С	2.97059 -0.97193 0.26516
С	2.90941 0.42092 0.05112
Н	4.08509 2.17505 -0.33569
Н	2.06907 -1.54235 0.46264
С	1.63889 1.19881 0.05864
С	0.37164 0.53123 0.03221
Н	0.33669 -0.54641 -0.0167
0	1.70934 2.46994 0.07421
С	-0.82459 1.23942 0.04453
С	-2.15833 0.64266 0.01924
С	-2.37082 -0.75239 0.00134
С	-3.30525 1.46488 0.01265
С	-3.64341 -1.29844 -0.02272
Н	-1.52832 -1.43671 0.00817
С	-4.58627 0.93638 -0.01154
Н	-3.18312 2.54265 0.02575
С	-4.80053 -0.46939 -0.0307
0	-0.80663 2.5775 0.08149
Н	-3.74272 -2.37714 -0.03475
Н	-5.42823 1.61809 -0.0164
Н	4.22695 -2.71822 0.42597
Н	6.24932 1.00304 -0.38055
Ν	-6.06201 -1.00286 -0.05518
С	-6.2498 -2.44922 -0.0757
Н	-5.82017 -2.92497 0.81601
Н	-7.31737 -2.66918 -0.09552
Н	-5.79161 -2.90328 -0.96448
С	-7.23031 -0.1292 -0.06027
Н	-7.24128 0.52449 -0.94267
Н	-8.13211 -0.74144 -0.08055
Н	-7.26589 0.50195 0.83778
Н	0.17529 2.83719 0.08384
0	6.51631 -1.69668 0.02118
С	7.77247 -1.04714 -0.19666
Н	8.52298 -1.83652 -0.1451
Н	7.80397 -0.57328 -1.18443
Н	7.9688 -0.30081 0.58163

Excited State 1: Singlet-A 2.9913 eV 414.48 nm f=1.1302 <S**2>=0.000 79 -> 80 0.70098

This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -977.909564199 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2: Singlet-A	3.8396 eV 322.91 nm f=0.1929 <s**2>=0.000</s**2>
74 -> 80	0.12152	
75 -> 80	0.24583	
78 -> 80	0.63042	
Excited State	3: Singlet-A	3.9312 eV 315.39 nm f=0.0546 <s**2>=0.000</s**2>
74 -> 80	0.30106	

75 -> 80	0.53831
76 -> 80	0.12634
77 -> 80	0.11068
78 -> 80	-0.27467

DMA-F	Occupied Orbitals	Unoccupied Orbitals
он о	НОМО	LUMO
N F		
J J J J J J J J J J J J J J J J J J J		

E(TD-HF/TD-KS) = -962.62392731 a.u. Dipole Moment = 10.2185 Debye

С	-4.56293	0.9175	0.26184
С	-5.7664	0.21623	0.30781
С	-5.74053	-1.1488	0.04568
С	-4.57016	-1.83339	-0.25832
С	-3.37403	-1.11562	-0.29189
С	-3.35111	0.26612	-0.03067
Н	-4.54957	1.98428	0.45693
Η	-2.46306	-1.64726	-0.54432
С	-2.09689	1.08219	-0.06056
С	-0.81589	0.4498	-0.03197
Н	-0.75114	-0.62548	0.03649
0	-2.21116	2.348 -	0.0931
С	0.36177	1.19264	-0.05886
С	1.71009	0.63524	-0.02878
С	1.96258	-0.75353	-0.00153
С	2.83292	1.49109	-0.02806
С	3.25009	-1.26182	0.02613
Н	1.14024	-1.46199	-0.00434
С	4.12801	1.00049	0.00032
Η	2.67935	2.56467	-0.0486
С	4.38276	-0.39897	0.02896
0	0.30388	2.52761	-0.11467
Н	3.38147	-2.33691	0.04474
Н	4.94998	1.70616	0.00093
Н	-4.59879	-2.89795	-0.46695
Н	-6.70483	0.70939	0.54047
Ν	5.65837	-0.89469	0.0576
С	5.88946	-2.33505	0.08596
Н	5.47527	-2.82756	-0.80378
Н	6.96309	-2.52258	0.10817
Н	5.44393	-2.79735	0.97674
С	6.80066	0.01338	0.05741
Н	6.79051	0.67322	0.93498
Н	7.71997	-0.57178	0.08361
Н	6.81855	0.63823	-0.8454
Н	-0.683	2.76236 -	0.116
F	-6.91163	-1.84407	0.08495

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.9599 eV 418.87 nm f=0.9705 <S**2>=0.000 75 -> 76 0.70368

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -962.623927305Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 3.8853 eV 319.11 nm f=0.0044 <S**2>=0.000 70 -> 76 0.13347 71 -> 76 0.59372 72 -> 76 0.15155 73 -> 76 0.30077

Excited State 3: Singlet-A 4.0529 eV 305.91 nm f=0.2659 <S**2>=0.000 74 -> 76 0.60199 75 -> 77 -0.33480 75 -> 78 0.11881

DMA-Br	Occupied Orbitals	Unoccupied Orbitals
OH O N H H Br	номо	LUMO
J J J J J J J J J J J J J J J J J J J		

E(TD-HF/TD-KS) -3436.89947099 a.u. Dipole Moment 10.3778 Debye

С	-3.3015	1.58916	0.24374
С	-4.57157	1.01631	0.26206
С	-4.69992	-0.34905	0.00354

С	-3.58658 -1.14343 -0.26982
С	-2.32151 -0.5556 -0.28188
С	-2.15936 0.81573 -0.02321
Н	-3.1831 2.65006 0.43631
Н	-1.46786 -1.1828 -0.51522
С	-0.82789 1.50129 -0.04996
С	0.38097 0.74218 -0.03193
Н	0.33614 -0.33445 0.02899
0	-0.81561 2.7721 -0.07518
С	1.62839 1.36203 -0.05706
С	2.9126 0.67087 -0.02996
С	3.02283 -0.73656 -0.00885
С	4.11628 1.40881 -0.02362
С	4.25206 -1.37273 0.01932
Н	2.13322 -1.35824 -0.01695
С	5.35473 0.7895 0.00486
Н	4.07213 2.49247 -0.0398
С	5.4662 -0.62871 0.02845
0	1.70541 2.6962 -0.10529
Н	4.27403 -2.45563 0.03363
Н	6.24388 1.40823 0.00947
Н	-3.70024 -2.20212 -0.47684
Н	-5.44577 1.62252 0.47499
Ν	6.68505 -1.25042 0.05783
С	6.76953 -2.7071 0.0808
Н	6.30961 -3.15199 -0.81157
Н	7.81863 -3.00221 0.10393
Н	6.27771 -3.12516 0.96902
С	7.91337 -0.46248 0.06176
Н	7.96878 0.19239 0.94136
Н	8.76886 -1.13753 0.08707
Н	7.99567 0.15983 -0.83914
Н	0.74778 3.03001 -0.10316
Br	-6.433 -1.14972 0.03392
T	• • • • • • • • • • • • • • • • • • • •

Excited State 1: Singlet-A 2.8961 eV 428.11 nm f=0.9895 <8**2>=0.000 88 -> 89 0.70315

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -3436.89947099

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 3.8409 eV 322.80 nm f=0.0145 <S**2>=0.000 83 -> 89 0.18778 84 -> 89 0.63029 86 -> 89 0.17743

Excited State 3: Singlet-A 3.9564 eV 313.38 nm f=0.3600 <S**2>=0.000 84 -> 89 -0.13085 87 -> 89 0.60094 88 -> 90 0.33396

DMA-I	Occupied Orbitals	Unoccupied Orbitals
OH O N	номо	LUMO
J T T T		

E(TD-HF/TD-KS) = -873.93384033 a.u. Dipole Moment = 10.2066 Debye

С	-2.58045	1.82404	0.2621
С	-3.86942	1.28975	0.28748
С	-2.96212	-0.88082	-0.32867
С	-1.67732	-0.3332	-0.33935
С	-1.46667	1.02381	-0.04287
Н	-2.42684	2.87468	0.48523
Н	-0.84792	-0.98077	-0.60372
С	-0.11046	1.66053	-0.051
С	1.06765	0.85403	-0.02795
Н	0.97856	-0.22044	0.01978
0	-0.04928	2.93016	-0.06344

С	2.33932 1.42356 -0.04086
С	3.5941 0.67955 -0.01705
С	3.64435 -0.73089 0.03495
С	4.82849 1.36499 -0.04724
С	4.84561 -1.41903 0.05731
Н	2.72891 -1.31326 0.06073
С	6.03987 0.69308 -0.02697
Н	4.83059 2.44894 -0.08746
С	6.09071 -0.7282 0.02708
0	2.46961 2.75363 -0.07925
Н	4.82151 -2.50117 0.09874
Н	6.95481 1.27259 -0.05245
Н	-3.10325 -1.92882 -0.57
Н	-4.71445 1.92385 0.53463
Ν	7.28229 -1.40172 0.04954
С	7.30473 -2.85955 0.11459
Н	6.80747 -3.30965 -0.75482
Н	8.34052 -3.19926 0.12532
Н	6.81424 -3.23009 1.02456
С	8.54295 -0.66704 0.02179
Н	8.6412 -0.00181 0.89
Н	9.3695 -1.3775 0.0432
Н	8.63624 -0.06255 -0.89
Н	1.52622 3.12545 -0.08055
Ι	-6.02264 -0.90501 0.02464
С	-4.04734 -0.06343 -0.00902

Excited State 1: Singlet-A 2.9217 eV 424.35 nm f=0.9907 <S**2>=0.000 74 -> 75 0.70296

This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -873.933840332Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2: Singlet-A	3.8542 eV 321.69 nm f=0.0119 <s**2>=0.000</s**2>
68 -> 75	0.17533	
70 -> 75	0.65065	
72 -> 75	-0.12827	
73 -> 75	-0.12320	
Excited State	3: Singlet-A	3.9133 eV 316.82 nm f=0.0009 <s**2>=0.000</s**2>
74 -> 76	0.70039	

E(TD-HF/TD-KS) = -1200.50918528 a.u. Dipole Moment = 11.7488 Debye

С	-3.3666	1.5491	0.3294
С	-4.62737	0.95789	0.35387
С	-4.77184	-0.38168	-0.02647
С	-3.6546	-1.1246	-0.42366
С	-2.39439	-0.52872	-0.43458
С	-2.23363	0.81433	-0.05637
Н	-3.24624	2.58946	0.61115
Н	-1.54484	-1.11606	-0.76606
С	-0.90301	1.50872	-0.06674
С	0.30339	0.74987	-0.03768
Н	0.25453	-0.32714	0.01764
0	-0.8994	2.77886	-0.08381
С	1.55221	1.37093	-0.05099
С	2.83537	0.68069	-0.02045
С	2.94467	-0.72583	0.04601
С	4.03996	1.41713	-0.05835

С	4.17335 -1.36221	0.07417
Н	2.05456 -1.34588	0.07918
С	5.27779 0.79735	-0.03269
Н	3.99651 2.49972	-0.10948
С	5.3883 -0.61993	0.0353
0	1.62675 2.70456	-0.09733
Н	4.19477 -2.44386	0.12735
Н	6.16753 1.41435	-0.06519
Н	-3.76435 -2.15931	-0.73172
Н	-5.49185 1.53788	0.66051
Ν	6.60633 -1.24192	0.0623
С	6.69018 -2.69715	0.13665
Н	6.20668 -3.17268	-0.72671
Н	7.73926 -2.99303	0.14239
Н	6.22144 -3.0817	1.05214
С	7.83568 -0.45588	0.02796
Н	7.90484 0.22148	0.88937
Н	8.69056 -1.13145	0.05775
Н	7.90494 0.14233	-0.88999
Н	0.67024 3.03939	-0.10128
С	-6.12264 -1.03988	0.03535
F	-6.35016 -1.62891	1.24651
F	-6.26728 -2.02002	-0.89305
F	-7.14062 -0.16308	-0.15551

Excited State 1: Singlet-A 2.8238 eV 439.06 nm f=0.8475 <S**2>=0.000 87 -> 88 0.70466

This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1200.50918528Copying the excited state density for this state as the 1-particle RhoCI density.

3.7881 eV 327.30 nm f=0.0048 <S**2>=0.000 Excited State 2: Singlet-A 82 -> 88 -0.14716 83 -> 88 0.24541 84 -> 88 0.63753 Excited State 3: Singlet-A 3.9142 eV 316.76 nm f=0.3800 <S**2>=0.000 -0.44506 86 -> 88 87 -> 89 0.54068

E(TD-HF/TD-KS) = -1091.30891292 a.u. Dipole Moment = 8.4354 Debye

С	-3.34386	1.49949	0.26643
С	-4.60039	0.90095	0.29497
С	-4.74333	-0.45149	-0.05489
С	-3.61048	-1.18864	-0.43024
С	-2.35366	-0.58929	-0.4464
С	-2.20259	0.76381	-0.09572
Н	-3.2302	2.54573	0.52926
Н	-1.49762	-1.17903	-0.75692
С	-0.87646	1.46469	-0.1066
С	0.33511	0.71339	-0.06361
Н	0.29254	-0.36339	0.00002
0	-0.87756	2.73513	-0.13578
С	1.57982	1.34203	-0.0713
С	2.8674	0.66019	-0.02474
С	2.98544	-0.74565	0.03908
С	4.06728	1.40481	-0.04357
С	4.21803	-1.37376	0.08282
Н	2.09923	-1.37188	0.05608

C	5 30895	0 79343	-0.00154
	4 01714	0.77545	0.00134
П	4.01/14	2.48/23	-0.09230
C	5.42825	-0.62314	0.06419
0	1.64658	2.67591	-0.12599
Н	4.24599	-2.45548	0.13191
Н	6.19478	1.41664	-0.01952
Н	-3.7246	-2.23053	-0.71104
Η	-5.46995	1.47963	0.58614
Ν	6.65015	-1.23699	0.10744
С	6.74275	-2.69211	0.17115
Н	6.27858	-3.16404	-0.70485
Н	7.79358	-2.98089	0.19435
Н	6.2598	-3.08727	1.07456
С	7.87452	-0.44287	0.08712
Η	7.92723	0.23736	0.94735
Н	8.73342	-1.11258	0.13104
Η	7.95263	0.15336	-0.83155
Η	0.68711	3.00372	-0.14104
С	-6.06631	-1.14059	-0.04712
0	-6.23134	-2.31337	-0.3491
0	-7.07247	-0.33139	0.33156
С	-8.39183	-0.91566	0.36967
Η	-9.05154	-0.11122	0.69323
Η	-8.67574	-1.27145	-0.62356
Н	-8.41692	-1.7447	1.08094

Excited State 1: Singlet-A 2.7174 eV 456.26 nm f=0.7632 <S**2>=0.000 86 -> 87 0.70471

This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1091.30891292 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2: Singlet-A	3.7129 eV	333.93 nm	f=0.3790	<s**2>=0.000</s**2>
81 -> 87	-0.11965				
82 -> 87	0.23192				
83 -> 87	0.33320				
85 -> 87	-0.23259				
86 -> 88	0.50664				
Excited State	3: Singlet-A	3.7352 eV	331.93 nm	f=0.1661	<s**2>=0.000</s**2>
81 -> 87	-0.27810				
82 -> 87	0.28456				
83 -> 87	0.38801				
85 -> 87	0.16491				

86 -> 88 -0.38745

E(TD-HF/TD-KS) = -955.40196265 a.u.Dipole Moment = 12.5894 Debye

-4.27916 1.14948 0.302
-5.50255 0.4902 0.34689
-5.56523 -0.87935 0.03111
-4.39631 -1.57385 -0.32708
-3.17718 -0.90274 -0.35833
-3.101 0.46465 -0.04222
-4.22062 2.20646 0.53705
-2.29066 -1.45354 -0.65276
-1.81411 1.2383 -0.07007
-0.56374 0.5565 -0.0399
-0.54305 -0.52062 0.02583
-1.89003 2.50613 -0.10107
0.64448 1.25501 -0.06045
1.96733 0.64621 -0.02747
2.16342 -0.7521 0.0082

С	3.12431 1.45671 -0.0320	07
С	3.42862 -1.31159 0.0383	59
Н	1.31335 -1.42677 0.010	68
С	4.39766 0.91439 -0.0014	4
Н	3.0143 2.53548 -0.059	
С	4.59556 -0.4947 0.0354	9
0	0.63468 2.58986 -0.113	86
Н	3.51614 -2.39095 0.0642	2
Н	5.24764 1.58585 -0.005	54
Н	-4.44708 -2.62768 -0.581	16
Н	-6.40577 1.02534 0.6222	23
Ν	5.84884 -1.04098 0.066	07
С	6.02128 -2.48988 0.100	65
Н	5.58608 -2.96855 -0.786	45
Н	7.08633 -2.7207 0.1222	27
Н	5.5586 -2.92912 0.9941	4
С	7.02854 -0.18119 0.0580	65
Н	7.04661 0.48408 0.9318	31
Н	7.92239 -0.80436 0.088	16
Н	7.07126 0.43579 -0.8483	55
Н	-0.34104 2.86414 -0.119	15
С	-6.82285 -1.56763 0.070	07
Ν	-7.84401 -2.12663 0.102	46

Excited State 1: Singlet-A 2.7624 eV 448.83 nm f=0.7127 <S**2>=0.000 77 -> 78 0.70513
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-KS) = -955.401962651
Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 3.6828 eV 336.66 nm f=0.0062 <S**2>=0.000 73 -> 78 -0.22932 74 -> 78 0.65358 Excited State 3: Singlet-A 3.8194 eV 324.62 nm f=0.5300 <S**2>=0.000 76 -> 78 0.47424 77 -> 79 0.51477

Fig. S1. Molecular orbitals of selected DMA substituted diketones.

Fig. S2. Image of DMA-OMe dissolved (from left to right) in toluene, dioxane, CHCl₃, CH₂Cl₂, THF, EtOAc, MeOH, and ACN (1 x 10⁻⁵M) (λ_{ex} = 365 nm) (a), and corresponding absorption (b), and emission (c) spectra. (λ_{ex} = 385 nm)

Fig. S3. Image of DMA-F dissolved (from left to right) in toluene, dioxane, CHCl₃, CH₂Cl₂, THF, EtOAc, MeOH, and ACN (1 x 10⁻⁵M) (λ_{ex} = 365 nm) (a), and corresponding absorption (b), and emission (c) spectra. (λ_{ex} = 385 nm).

Fig. S4. Image of DMA-Br dissolved (from left to right) in toluene, dioxane, CHCl₃, CH₂Cl₂, THF, EtOAc, MeOH, and ACN (1 x 10^{-5} M) (λ_{ex} = 365 nm) (a), and corresponding absorption (b), and emission (c) spectra. (λ_{ex} = 385 nm).

Fig. S5. Image of DMA-CF₃ dissolved (from left to right) in toluene, dioxane, CHCl₃, CH₂Cl₂, THF, EtOAc, MeOH, and ACN (1 x 10⁻⁵M) (λ_{ex} = 365 nm) (a), and corresponding absorption, (b) and emission (c) spectra (λ_{ex} = 385 nm).

Fig. S6. Image of DMA-COOMe dissolved (from left to right) in toluene, dioxane, CHCl₃, CH₂Cl₂, THF, EtOAc, MeOH, and ACN (1 x 10⁻⁵M) (λ_{ex} = 365 nm) (a), and corresponding absorption (b), and emission (c) spectra (λ_{ex} = 385 nm).

Fig. S7. Lippert Mataga plots of DMA substituted diketones.

Fig. S8. Raw (top) and normalized by peak wavelength (bottom) emission spectra of DMA-I and DMA-CN in THF/H₂O solutions with increasing water fractions (fw, %). (λ_{ex} = 369 nm).

Fig. S9. Excitation spectra of DMA-I and DMA-CN in THF/H₂O solutions with increasing water fractions (fw, %). (λ_{ex} = 369 nm)

Fig. S10. Emission spectra of Dye/PS thin films of DMA-I (a) and DMA-CN (b) with increasing dye concentration.

Fig. S11. Excitation spectra of Dye/PS thin films of DMA-I (a) and DMA-CN (b) with increasing dye concentration.

Fig. S12. Emission spectra of Dye/CA/PS thin films of DMA-I (a) and DMA-CN (b) with increasing CA concentration.

Fig. S13. Powder XRD patterns of DMA-I (a) and DMA-CN (b) polystyrene (PS) films doped with camphoric anhydride (CA).

Fig. S14. Excitation spectra of dye/CA/PS thin films of DMA-I (a) and DMA-CN (b) with increasing CA concentration.

Fig. S15. Total emission spectra of diketone films on weigh paper substrates in thermally annealed (TA), smeared (SM) and melted (MT) phases. (λ_{ex} = 369 nm).

Fig. S16. Differential scanning calorimetery (DSC) thermograms of diketones. Cooling rate varied between first (blue, 10 °C/min) and second (red, 1 °C/min) cycles. (Heating rate = 5 °C/min)

Fig. S17. Powder X-ray diffraction patterns of diketones as bulk powders and glass films in the thermally annealed (TA) and melted (MT) states.

References

- N. D. Nguyen, G. Zhang, J. Lu, A. E. Sherman and C. L. Fraser, *J. Mater. Chem.*, 2011, **21**, 8409–8415.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
 Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. A. Petersson, *Gaussian* 09 Revis. A.1; Gaussian, Inc. Wallingford, CT, 2009.
- 4 R. Tomasi, J.; Mennucci, B.; Cammi, *Chem. Rev.*, 2005, **105**, 2999–3094.