Supporting Information

A microporous yttrium metal-organic framework of an unusual *nia* topology for high adsorption selectivity of C_2H_2 and CO_2 from CH_4 at room temperature

Kang Liu, [†] Yunmei Du, [†] Dingxuan Ma, [†] Hongdong Li, [†] Yi Han, [†] Baiyan Li, [‡] Zhan Shi[‡] and Lei Wang *, [†]

[†] College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

‡ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China

* Corresponding author: inorchemwl@126.com

Figure S1. Asymmetric units of Y-H₃TDPAT (H atoms are omitted for clarity).

Figure S2. The space-filling view of the open channel along *b* axis in Y-H₃TDPAT.

Figure S₃. The infrared spectra for Y-H₃TDPAT.

Figure S4. The BET surface area of Y-H₃TDPAT obtained from N₂ sorption isotherm at 77 K.

Figure S5. The PXRD data of $Y-H_3TDPAT$ showing good agreement with simulated one for as-

synthesized, activated and after adsorbed sample.

Figure S6. TGA plot of as-synthesised sample (blue) and guest-free sample (coral).

Thermal gravimetric analyses (TGA) were performed under N₂ atmosphere with a heating rate of 20 °C/min using a Netzsch STA 449C apparatus. The amount of guest molecules in as-synthesized Y-H₃TDPAT is ~37 wt% according to the TG data.

Isosteric Heats of Gas Adsorption (Q_{st}). A virial-type²³ expression comprising the temperatureindependent parameters a_i and b_j was employed to calculate the enthalpies of adsorption for , C_2H_2 , CO_2 and CH_4 (at 273 and 298K) on Y-H₃TDPAT. In each case, the data were fitted using the equation: $\Box \Box$

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{j=0}^{n} b_j N^j$$

Here, *P* is the pressure expressed in Torr, *N* is the amount adsorbed in mmol/g, *T* is the temperature in K, a_i and b_j are virial coefficients, and *m*, *n* represent the number of coefficients required to adequately describe the isotherms (*m* and *n* were gradually increased until the contribution of extra added *a* and *b* coefficients was deemed to be statistically insignificant towards the overall fit, and the average value of the squared deviations from the experimental values was minimized). The values of the virial coefficients a_o through a_m were then used to calculate the isosteric heat of adsorption using the following expression.

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$

 Q_{st} is the coverage-dependent isosteric heat of adsorption and *R* is the universal gas constant. The heat of varieties of gases sorption for Y-H₃TDPAT in this manuscript are determined by using the sorption data measured in the pressure range from o-1 bar, which is fitted by the virial-equation very well.

Figure S7. The details of virial equation (solid lines) fitting to the experimental C_2H_2 adsorption data (symbols) for Y-H₃TDPAT.

Figure S8. The C₂H₂ adsorption enthalpies of Y-H₃TDPAT.

Figure S9. The details of virial equation (solid lines) fitting to the experimental CO₂ adsorption data (symbols) for Y-H₃TDPAT.

Figure S10. The CO₂ adsorption enthalpies of Y-H₃TDPAT.

Figure S11. The details of virial equation (solid lines) fitting to the experimental CH_4 adsorption data (symbols) for Y-H₃TDPAT.

Figure S12. The CH_4 adsorption enthalpies of $Y-H_3TDPAT$.

Calculations of selectivity based on the Henry's Law.

The Henry's Law selectivity for gas component *i* over *j* at a specific temperature is calculated based on the following equation.

$$S_{ii} = K_{Hi} / K_{Hi}$$

The Henry's Law constants were calculated directly from the adsorption isotherms.

Figure S13. Virial analysis of the adsorption data for C₂H₂ on Y-H₃TDPAT at 273 K: Low pressure data.

Figure S14. Virial analysis of the adsorption data for CO₂ on Y-H₃TDPAT at 273 K: Low pressure data.

Figure S15. Virial analysis of the adsorption data for CH₄ on Y-H₃TDPAT at 273 K: Low pressure data.

Figure S16. Virial analysis of the adsorption data for C₂H₂ on Y-H₃TDPAT at 298 K: Low pressure data.

Figure S17. Virial analysis of the adsorption data for CO₂ on Y-H₃TDPAT at 298 K: Low pressure data.

Figure S18. Virial analysis of the adsorption data for CH_4 on Y-H₃TDPAT at 298 K: Low pressure data.

Figure S19. C_2H_2 adsorption isotherms at 298 K along with the Dualsite Langmuir Freundich (DSLF) fits.

Figure S20. CO_2 adsorption isotherms at 298 K along with the Dualsite Langmuir Freundich (DSLF) fits.

Figure S21. CH_4 adsorption isotherms at 298 K along with the Dualsite Langmuir Freundich (DSLF) fits.

Figure S22. The PXRD data of Y-H₃TDPAT in several common organic solvents.

Figure S23. Wave type arrangement of C_2H_2 guests with C-H··· π interactions.

Material	BET (Langmuir) SA	C ₂ H ₂ uptake	Q _{st}
	$[m^2 g^{-1}]$	$[cm^3 g^{-1}]$	[kJ mol ⁻¹]
HKUST-1	1401 (2095)	201	30.4
CoMOF-74	1018 (1504)	197	50.1
NOTT-101	(2930)	184	37.1
Cu-TDPAT	1938 (2608)	178	42.5
UTSA-20	(1894)	150	30.8
Y-H ₃ TDPAT	962	100	38.2
UTSA-5	462	60	30.8
$[Zn_4(dmf)(ur)_2(ndc)_4]$	1060	33	24.0
MOF-5	2381	26	16.5
ZIF-8	1112	25	13.3

Table S1. Acetylene adsorption on some porous MOFs at room temperature and atmospheric pressure.

	N1 ^{ma} Compou	und	n ₁	ſ -Ŋ ₂ŦÐ₽AT	b ₂	n ₂	R ²
	[mmol/g]			[mmol/g]			
	Molecu	ar formula	($C_{27}H_{15}N_6O_{12}$	$Y^{[KPa^{-1}]}$		
LL	fw	1	, ,	704.34	I	1	
	crystal s	system]	Hexagonal			
	space gr	roup	Ì	P31c			
	a, Å		1	2.8501(18)			
	b, Å		1	2.8501(18)			
	<i>c</i> , Å		1	5.709(3)			
	<i>V</i> , Å ³		2	2246.4(6)			
	Ζ		(5			
	Dcalc, g	g/cm ³	1	.037			
	F(000)		-	/02			
	final R i	indices [I >]	2σ(I)] I	$R_1 = 0.0325,$	$wR_2 = 0.089$	90	
	R indice	es (all data)]	$R_1 = 0.0345$,	$wR_2 = 0.089$	97	

Table S2. Crystal data and structure refinement for Y-H3TDPAT.

C ₂ H ₂	1.38504	0.01491	0.98286	12.21666	0.04397	0.48779	0.9999999
CO ₂	0.86442	0.06945	1.09461	14.53642	0.00197	0.99843	0.999997
CH ₄	2.42166	0.00043	1.03630	4.15031	0.00185	1.00292	1

Table S3. The refined parameters for the Dual-site Langmuir-Freundlich equations fit for the pure isotherms of C_2H_2 , CO_2 and CH_4 in Y-H₃TDPAT at 298K.