Supplementary information

High Rate Li-Ion Storage Property of MOFs-Carbonized Derivatives Coating on MnO Nanowires

State Key Laboratory of Multiphase **Complex Systems Institute of Process** Engineering Chinese Academy of Sciences

No. 1. Beiertiao, Zhongguancun 9 Beijing 100190 P.R. China E-mail: danwang@mail.ipe.a c.cn

Zhen-Dong Huang ^a, [†] Zhen Gong ^a, [†] Qi Kang ^a, Yanwu Fang ^a, Xu-Sheng Yang ^b, Ruiqing Liu ^a, Xiujing Lin ^a, Xiaomiao Feng ^a, Yanwen Ma ^a, * and Dan Wang ^a, ^c, * ^a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

^b Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.

^c State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences, No. 1, Beiertiao, Zhongguancun, Beijing, 100190, P.R. China.

[†] Dr. Huang and Mr. Gong have the equal contribution to this paper.

* Corresponding authors:

iamywma@njupt.edu.cn (Y.W. Ma); danwang@mail.ipe.ac.cn (D Wang).

Fig. S1. Scanning electron microscopy (SEM) images of as-prepared ZIF-67-MnO₂ NWs mixture without using PVP (a) and the derivative of ZIF-67-MnO₂ NWs heat-treated at 300 $^{\circ}$ C for 2 h (b).

Fig. S2. Acquire HAADF TEM images of carbonized derivative of ZIF-67-MnO₂ NWs (C/Co-MnO NWs) (a), and the corresponding element mapping of C (b), Co (c), K (d), Mn (e) and O (f), respectively.

Fig. S3. The first cycle charge/discharge profiles corresponding to (a) the as-prepared MnO₂ NWs, C/Co, C/Co-MnO NWs and ZIF-67-MnO₂ NWs and (b) C/Co-MnO NWs at the current density ranged from 500 to 5000 mAg⁻¹, respectively, (c) The electrochemical impedance spectra of the C/Co-MnO NWs, (d) the Bode plots of C/Co-MnO NWs, C/Co, ZIF-67-MnO₂ NWs, and MnO₂ NWs, respectively.

Fig. S4. (a) and (b) The SEM images, (c) the first cycle charge/discharge profiles and (d) the cyclic performance at different current density of the controlled physical mixture of MnO_2 NWs and Co/C derivatives. The mixtures was prepared by physically mixing the as-prepared MnO_2 NWs (75*wt*%) and Carbonized ZIF-67 (25*wt*%) via ultrasonication in ethanol, followed by drying the dispersion at 60 °C for 10 h in blowing drying oven.