## Supplementary information

## Flexible unipolar thermoelectric devices based on patterned

## poly[K<sub>x</sub>(Ni-ethylenetetrathiolate)] thin films

Liyao Liu<sup>a,b</sup>, Yuanhui Sun<sup>a</sup>, Wenbo Li<sup>a</sup>, Jiajia Zhang<sup>a,b</sup>, Xing Huang<sup>a,b</sup>, Zhijun Chen<sup>a,b</sup>, Yimeng Sun<sup>a</sup>, Chongan Di<sup>\*a</sup>, Wei Xu<sup>\*a,b</sup> and Daoben Zhu<sup>\*a,b</sup>.

<sup>a.</sup> Beijng National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

<sup>b.</sup>University of Chinese Academy of Science, Beijing, 100190, China. E-mail: <u>wxu@iccas.ac.cn</u>; <u>dicha@iccas.ac.cn</u>; <u>zhudb@iccas.ac.cn</u>



Figure S1. (a) Photograph of  $poly[K_x(Ni-ett)]$  films contacting directly to the PET substrate. (b) Photograph of a unipolar  $poly[K_x(Ni-ett)]$  TE device.



Figure S2. (a) Schematic (b) photograph of the experimental setup for testing Seebeck, conductivity, I-V curve and stability. Temperature difference was generated by voltmeter and measured by infrared thermometer between a hot and a cold Peltier elements. The thermoelectric performance was obtained by semiconductor parameter analyser.